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Abstract. Electromagnetic and Lorentz-scalar form factors are calculated for a bound system of two spin-
less particles exchanging a zero-mass scalar particle. Different approaches are considered including solutions
of a Bethe-Salpeter equation, a “point form” approach to relativistic quantum mechanics and a non-
relativistic one. The comparison of the Bethe-Salpeter results, which play the role of an “experiment” here,
with the ones obtained in “point form” in single-particle approximation, evidences sizable discrepancies,
pointing to large contributions from two-body currents in the latter approach. These ones are constructed
using two constraints: ensuring current conservation and reproducing the Born amplitude. The two-body
currents so obtained are qualitatively very different from standard ones. Quantitatively, they turn out
not to be sufficient to remedy all the shortcomings of the “point form” form factors evidenced in impulse
approximation.

PACS. 11.10.St Bound and unstable states; Bethe-Salpeter equations – 13.40.Gp Electromagnetic form
factors – 12.39.Ki Relativistic quark model

1 Introduction

The point form of relativistic quantum mechanics is much
less known than the instant and front forms [1], which
have been extensively used for describing few-body sys-
tems. Recently, a calculation of the nucleon form factors
in the former approach has revealed to be in surpris-
ingly good agreement with experiment [2]. There are slight
discrepancies for the magnetic moments or at the high-
est momentum transfers considered in the work, around
Q2 = 3–4 (GeV/c)2, but in view of the simplicity of the
ingredients involved in the calculation, this is at first sight
a negligible point.

The examination of the calculation immediately raises
questions. It is a well-known phenomenology that the nu-
cleon form factors at low Q2 are largely dominated by
the coupling of the photon to the nucleon via ω and ρ
exchanges (vector meson dominance [3]). The calculation
of ref. [2] leaves no room for this important physical con-
tribution, and nothing indicates that the corresponding
phenomenology is accounted for in a hidden way by rel-
ativistic effects incorporated in the formalism. It is also
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known that effects in relation with the pion cloud of the
nucleon explain the neutron charge radius [4,5] and there
is no need to invoke relativity in this respect. On the other
hand, it is surprising that quark form factors (which may
account for the above coupling of the ω and ρ mesons) are
discarded while they are needed in the construction of the
quark-quark interaction used to describe the nucleon [6].
An attempt to incorporate the above physics at the quark
level was recently made [7].

When looking at a given system in the Breit frame, the
parameter that determines the form factor in “point form”
is the velocity [8], v = (Q/2M)/(1 + Q2/4M2)1/2, where
M is the total mass of the system. This has surprising
consequences. It immediately follows from this expression
that the charge squared radius scales like 1/M2 and there-
fore will increase when M2 → 0. This is opposite to what
is generally expected. A smaller mass can be obtained by
increasing the attraction between the constituents, with
the result that, usually, the radius decreases.

Another way to put the problem is as follows. One
can add an arbitrary constant to the interaction without
changing the wave function, but changing the total mass.
For the same dynamics, one would thus get different form
factors, depending on the arbitrary constant added to the
Hamiltonian and therefore to the mass of the system under



94 The European Physical Journal A

consideration. This is a consequence of the formulas used
in ref. [2]. We will not discuss in detail the origin of this
paradox and how to solve it but its very existence is a fact
that cannot be ignored. Notice that the problem arising in
the limit M2 → 0 is not completely academic as it applies
to the pion [9]. A simple dimensional argument would lead
to a squared radius of the order of 3/m2

π � 6 fm2 (!).
Another point concerns current conservation. The cal-

culation made in ref. [2] does not incorporate mesonic
exchange currents that the exchange of charged mesons
like the pion implies to preserve this property. Indepen-
dently of this however, it can be checked that current
conservation is not fulfilled. This feature is shared by
other approaches. The fact that the total momentum in
the “point form” approach contains the interaction, which
translates into a particular form of momentum conserva-
tion, could make the problem more severe than in the
other approaches.

The large difference between the relativistic and non-
relativistic calculations has been attributed by the authors
themselves to boost effects. Curiously, similar effects have
not shown up in other approaches. To take into account
the Lorentz contraction, it has been proposed to replace
the argument of the form factor, Q2, by Q2/(1+Q2/4M2)
(see refs. [10,11] for a discussion). This recipe, only valid
at small Q2, gives an effect that goes in a direction oppo-
site to that found in ref. [2]. Calculations of the deuteron
electro-disintegration near threshold on the light-front,
which were physically incomplete but were supposed to
account for the various boost effects ensuring the covari-
ance of the results, have evidenced no sizable effect up
to Q2 = 10 (GeV/c)2 [12,13]. This shows that boost ef-
fects can be quite small on a large range of momentum
transfers in some cases. It is likely that they show up only
for some observables like the nucleon or pion form fac-
tors. In this case, non-relativistic estimates of the nucleon
(pion) form factor are expected to scale like Q−8 (Q−4)
at high momentum transfer for a quark-quark force which
behaves like 1/r at small distances [14]. The discrepancy
with the QCD expectation, Q−4 (Q−2), is essentially due
to a boost effect characterizing spin-(1/2) constituents,
which is therefore expected to increase the form factor at
high Q [15]. In the “point form” calculation of the nucleon
form factor performed up to now, the effect goes the other
way round. Of course, it may show up at larger Q2 but this
does not seem to be the tendency evidenced by the results.
A similar drop-off is observed or expected in other calcu-
lations (see for instance ref. [15]). The point is that these
calculations miss further contributions such as those of ex-
tra components in the light-front wave function or contact
terms [16]. In their absence, the nucleon and pion form
factors would not have the correct asymptotic behavior.

The above observations, quite puzzling in some cases,
have motivated calculations of form factors in a simple
theoretical model which could minimize as much as pos-
sible uncertainties due to spin or intrinsic form factors of
the constituents [17]. This model consists of two distin-
guishable, spin-less particles interacting by the exchange
of a spin-less, zero-mass boson (Wick-Cutkosky model [18,

19]). What accounts for the experiment is a calculation
performed using solutions of the Bethe-Salpeter equa-
tion [20], which are easily obtained in this case. Form
factors for the lowest bound states can be calculated ex-
actly without much effort and the single-particle current
used in the calculations ensures current conservation in all
cases. Though it is not quite realistic, this model there-
fore provides a useful testing ground for various relativis-
tic approaches. It was used by Karmanov and Smirnov,
for instance, to check the validity of the calculation of the
form factors of l = 0 and l = 1 states in the light-front ap-
proach [21]. The form factors calculated in this model will
be referred to as “exact” or “experimental” ones in the
following. Calculations based on the same “point form”
approach as mentioned above were performed using so-
lutions of a mass operator reproducing the spectrum of
the Wick-Cutkosky model. Examination of the results so
obtained revealed that form factors were missing the “ex-
perimental” ones with two respects. The fall-off of form
factors is too fast (the power law behavior of the Born
amplitude is missed) and the charge radius tends to be
too large, especially when the binding energy of the sys-
tem under consideration increases.

The discrepancy can be ascribed to the inadequacy of
the single-particle current to describe the bulk of the form
factors, requiring contributions from two-body currents
which, in comparison with other approaches, are quite siz-
able [17]. An alternative would consist in improving the
“point form” implementation. The one mostly referred to
in recent applications, also considered here, implies hyper-
planes perpendicular to the velocity of the system. This
feature was foreseen by Sokolov [22], who noticed that this
approach is not identical to the one proposed by Dirac,
which relies on a hyperboloid surface1. Proposals for im-
provements have been sketched in refs. [23,24].

In the present paper, we concentrate exclusively on
the first alternative, namely the introduction of two-body
currents which is explicitly done for the first time in the
present approach. This choice is motivated by two observa-
tions. While the agreement with experiment is rather good
for the “point form” proton magnetic form factor, a closer
examination clearly evidences the need for two-body cur-
rents. This can be seen immediately when considering the
ratio GM (Q2)/GD(Q2), which suddenly drops off around
Q2 = 3–4 (GeV/c)2 [25]. On the other hand, the analysis
of various calculations of form factors made in the light-
front approach shows that large contributions of two-body
currents are required as soon as one drops the condition
q+ = 0, which has no counterpart in the “point form”
formalism [26–28].

Results of a previous work [17] are first extended to a
Lorentz-scalar probe as well as to different mass operators,

1 The name point form was given by Dirac in relation with
the fact that the hyperboloid surface is invariant under Lorentz
transformations around some point, x = 0 for instance. The
two approaches have in common that the interaction is only
contained in the four generators P µ. To emphasize the differ-
ence with this original approach, we will use the notation with
quotation marks: “point form”.
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to get a better assessment of the problems raised by the
comparison of the “point form” results with the “experi-
mental” ones. The sensitivity to the mass operator is also
studied. We then consider two-body currents with a dou-
ble aim: to restore current conservation (in the case of an
electromagnetic probe) and to reproduce the Born ampli-
tude. While doing so, we faced a number of questions.
Some are specific to the implementation of the “point
form” approach referred to here. However, it turns out
that other ones have a more general character and also
occur in different forms of relativistic quantum mechan-
ics. Solutions that we considered could therefore be useful
elsewhere after being appropriately adapted. They have
been accounted for in ref. [24], which was motivated by
the question of whether features evidenced by the “point
form” approach were shared by the instant- and front-form
ones. However, these improvements give rise to a more
complicated single-particle current, making the derivation
of the associated two-body currents more involved. For
the present exploratory work on these currents, we will
consider the simplest one-body current. As will be seen,
the associated two-body currents are already sophisticated
enough.

It is not a priori certain whether the two-body cur-
rents we want to consider will be sufficient. In relativistic
quantum mechanics, the constituents of a system have an
effective character. The derivation of their interaction and
their currents is, apart from some constraints, an open
problem. Though good results were obtained for form fac-
tors in the instant form (Breit frame) and the front form
(q+ = 0) [24], one should keep in mind that the prob-
lem of determining currents is not necessarily closed. Re-
cent studies within the light-front approach have revealed
a strong frame dependence of individual contributions,
pointing to large contributions of two-body currents in
some cases [26–28]. Being motivated by Lorentz covari-
ance, it is not clear whether these currents have some rel-
evance here, where this property is intrinsic to the formal-
ism. Moreover, part of these studies were performed within
a field-theory approach. However, there is often some cor-
respondence between conclusions reached in such works
and those obtained in relativistic quantum mechanics.

While studying the contribution of two-body currents,
we have especially in mind the pion form factor, whose
recent re-evaluation [9], partly anticipated by a remark
made above, evidences considerable disagreement with ex-
periment. The new estimate now leaves room for well-
known contributions in relation with the Goldstone nature
of the pion [29]. The discrepancy could have many sources
in relation with this property, with the spin-(1/2) nature
of the constituents or the implementation of the “point
form” approach itself. As far as we can see, the last ingre-
dient is the most sensitive one. The present work, which
aims to settle the implementation of this approach in all
aspects, can therefore provide a relevant information as
for the description of the pion form factor. It is not clear
whether, ultimately, this program will be of practical in-
terest and will compete with a field-theory approach [29].
We nevertheless believe that it is part of a sound scientific

attitude to understand the gross features pertinent to the
description of the properties of few-body systems in either
approach.

The plan of the paper is as follows. The second sec-
tion is devoted to reminding the impulse approximation
expressions of the form factors we are calculating and also
includes the case of a scalar probe. In the third section, we
extend numerical results presented in a previous paper [17]
to the scalar form factor and to other mass operators.
The fourth section is concerned with general comments
inspired by the results so obtained. It deals with both the
low momentum transfers, where current conservation is
an important constraint, and high momentum ones, where
the consideration of the Born amplitude provides an im-
portant benchmark. The derivation of two-body currents
that allow one to fulfill these two constraints is made in
the fifth section. This is done consistently with the one-
body current that is used. Their contributions to form fac-
tors are then given. Results involving both contributions
are presented at the end of the section, together with a
discussion of that part due to two-body currents. Many
expressions pertinent to the present work are gathered in
the appendix.

2 Form factors in different formalisms

Extending our previous work [17], we here consider form
factors relative to both a scalar and an electromagnetic
probe. Quite generally, the corresponding matrix element
between two states with l = 0, possibly different, may be
expressed as√

2Ef2Ei 〈f |Jµ|i〉 = F1(q2)(P
µ
f + Pµi ) + F2(q2)qµ,√

2Ef2Ei 〈f |S|i〉 = F0(q2) (4m), (1)

where qµ = Pµf −Pµi and q2 = −Q2. The operators S and
Jµ on the l.h.s. of eq. (1), describe the interaction with the
external probe, respectively of Lorentz-scalar and vector
types. Due to current conservation, the form factors F1(q2)
and F2(q2) have to fulfill the following relationship:

F1(q2) (M2
f −M2

i ) + F2(q2) q2 = 0. (2)

For an elastic process, this is automatically fulfilled since
F2(q2) vanishes identically from symmetry arguments
alone, but this does not imply that current conservation
holds at the operator level, as it should. For an inelastic
process, eq. (2) implies that F1(q2) → 0 with q2.

The normalization of the form factors in eq. (1) is
for some part arbitrary. Assuming that the system un-
der consideration is made of one charged and one neutral
particle, it is appropriate to normalize F1(q2) such that
F1(q2 = 0) = 1. In absence of a conservation law for the
scalar probe, we normalize the scalar form factor such that
F0(q2) and F1(q2) coincide in the non-relativistic limit.
Even so, other normalization factors with the same non-
relativistic limit in eq. (1) could be chosen, such as 2M
instead of 4m, but we did not find any compelling reason
to do it (see discussion in sect. 3).
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Fig. 1. Representation of a scalar particle or virtual photon
absorption on a two-body system, with indication of the kine-
matical definitions.

In the following, we successively consider form factors
in the Wick-Cutkosky model and in the “point form” ap-
proach. Some of the matter given in an earlier paper [17]
is provided in appendices A and B together with a few for-
mulas. The contribution we intend to calculate is shown
in fig. 1.

2.1 Form factors in the Wick-Cutkosky model

2.1.1 Interaction and Bethe-Salpeter amplitudes

What will account for our “experiment” is based on the
Wick-Cutkosky model. The Bethe-Salpeter amplitudes
take in this case a relatively simple integral form for the
lowest state with a given angular momentum l:

χ
P
(p) =

∫
dz

gn(z)Yml (�p )
(m2 − 1

4P
2 − p2 − z P ·p− iε)n+2

, (3)

with n = l + 1. For the first radial excitation, the Bethe-
Salpeter amplitude reads

χ
P
(p) =

∫
dz

gn(z) (p2 +m2 − 1
4P

2)Yml (�p )
(m2 − 1

4P
2 − p2 − z P ·p− iε)n+2

, (4)

where now n = l + 2. In these expressions, Yml (�p ) =
|�p |lY ml (p̂) and gn(z) is a solution of the second-order dif-
ferential equation [18,19]:

(1− z2) g′′n(z) + 2(n− 1) z g′n(z)− n(n− 1) gn(z)

+
α

π(ε2 z2 + 1− ε2)
gn(z) = 0 , (5)

with ε2 = P 2/(4m2) and the boundary conditions gn(z =
±1) = 0. Only normal solutions (without node) are con-
sidered here. In the small-binding limit, the function g1(z)
of the ground state is given by 1− |z|, while in the deep-
binding limit (M = 0), g1(z) ∝ 1− z2.

2.1.2 Expressions of form factors

For the model under consideration here, the general (and
exact) expression of the matrix element of the current can

be written in terms of the Bethe-Salpeter amplitudes:

√
2Ef 2Ei 〈f |S|i〉 = i

∫
d4p

(2π)4
(2m)

×χ
Pf

(
1
2
Pf − p

)
(p2 −m2)χ

Pi

(
1
2
Pi − p

)
,

√
2Ef 2Ei 〈f |Jµ|i〉 = i

∫
d4p

(2π)4
(
Pµf + Pµi − 2 pµ

)

×χ
Pf

(
1
2
Pf − p

)
(p2 −m2) χ

Pi

(
1
2
Pi − p

)
. (6)

According to our normalization convention, a factor 2m
has been introduced in the above expression of the scalar
form factor. In a scalar theory, like the Wick-Cutkosky
model, this factor is often separated out to make the cou-
pling constant dimensionless and directly comparable to
αQED.

Using eqs. (3) and (4), the calculation of the matrix
element, eq. (1), can be partly performed by employing the
Feynman method. A few expressions of interest here are
given in appendix A for both elastic and inelastic cases.
Though the calculation is not straightforward, it can be
checked that the current conservation, eq. (2), is verified
in the inelastic case.

2.2 Form factors in the “point form” approach

The “point form” approach to relativistic quantum me-
chanics is characterized by the property that, among the
10 generators of the Poincaré group, only the four mo-
menta Pµ contain the interaction. These ones can be writ-
ten as the sum of the free particle and interaction contri-
butions:

Pµ = Pµfree + Pµint =M V µ , (7)

where the last equality defines the four-velocity operator
V µ in terms of the mass operator M =

√
P 2.

In the implementation of the “point form” employed
in recent applications, the simplest choice compatible with
the Poincaré algebra has been made for the interaction
part of the four-momentum. This one assumes the form

Pµint =Mint V
µ, (8)

which, together with eq. (7), implies

V µ (M −Mint) = V µfree Mfree, (9)

where Mfree =
√
P 2

free. From this one obtains

V µ = V µfree, M =Mfree +Mint. (10)

The last relation, which could also be used as a definition
of Mint, is consistent with the choice of eq. (8).

The form of the interaction part of the four-momentum
considered in eq. (8) can be associated to a physics de-
scription on a hyper-plane perpendicular to the four-
velocity of the system, an observation made previously
by Sokolov [22]. As for the interaction term Mint, it may
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be chosen according to some theoretical prejudice or to
reproduce some experimental spectrum as done in ref. [2].
Instead of M , one can also use the square of the oper-
ator [8]. This has some advantage since, in the two-body
case,M2 is very close to a Schrödinger equation. The solu-
tions of this one may therefore also be used as was done in
ref. [17]. In this case, it turns out that the theoretical spec-
trum obtained with a Coulomb-like potential reproduces
rather well the one of the Wick-Cutkosky model. We have
thus a set of analytic wave functions that can be used for
the calculation of form factors. However, while doing this,
one has to worry that the currents associated to the mass
operators M2 and M may not be the same (a conserved
current is more easily built in one case than in the other).

2.2.1 Mass operator and solutions

In this work, we will still refer to the above calculations
made with the Coulomb-like potential (denoted model v0,
see appendix B) but we will also consider solutions of a
linear mass operator. Consistently with eq. (10), the cor-
responding equation takes the form

M ψ(k) = 2 ek ψ(k) +
∫

d�k ′

(2π)3
Vint(�k,�k ′)ψ(k′), (11)

where ek =
√
m2 + k2, while �k represents an internal vari-

able that, in the non-relativistic limit, could be identified
with the relative momentum. Without certitude about
which approach is the best, this will give insight on the
related uncertainty. The main difficulty is to derive an
interaction to be used in eq. (11) such that it reproduces
the spectrum of the Wick-Cutkosky model. The first-order
term one can think of is motivated by a standard field-
theory approach to the derivation of a one-boson interac-
tion. It is given by

Vint(�k,�k ′) = −m

ek

g2

(�k − �k ′)2
m

ek′
. (12)

This model, denoted v1, which is non-local, misses how-
ever properties of the Wick-Cutkosky model that were re-
produced by the Coulomb-like potential, such as the de-
generacy of 1p and 2s states. Relying on the fact that the
square of the mass operator should be close to the one
which works ((2ek +Mint)2 = 4e2k − 4mαeff

r in configura-
tion space), an extra term can be derived:

∆Vint(�k,�k ′) = −m

ek

(
g2

(�k − �k ′)2
2 ek ek′ −m (ek + ek′)

m (ek+ ek′)

+
g4

32m |k − k′|
8m3

(ek+ ek′)(ek+m)(ek′+m)

)
m

ek′
.

(13)

The expression is exact for the part linear in g2 and in-
cludes corrections at the order g4 in an approximate way

(exact in the lowest 1/m order with correct asymptotic
1/k4 power law (up to log terms)). The addition of the
above correction to the interaction given in eq. (12) de-
fines an improved model, denoted v2.

2.2.2 Expressions of form factors

Solutions of the mass operator M can now be used for
the calculation of form factors. This was described in
ref. [8] for the matrix element of the single-particle current.
However, instead of using expressions where appropriate
boosts have to be performed, we rely on expressions whose
Lorentz covariance is explicit:

√
2Ef 2Ei 〈f |S|i〉 =

√
2Mf 2Mi

1
(2π)3

×
∫

d4pd4pf d4pi dηf dηi
√
(pf + p)2 (pi + p)2

×δ(p2 −m2) δ(p2
f −m2) δ(p2

i −m2) θ(λf ·pf ) θ(λf ·p)
× θ(λi ·p) θ(λi ·pi) δ4(pf + p− λfηf ) δ4(pi + p− λiηi)

×φf

((
pf − p

2

)2
)
φi

((
pi − p

2

)2
)

(2m), (14)

√
2Ef 2Ei 〈f |Jµ|i〉 =

√
2Mf 2Mi

1
(2π)3

×
∫

d4pd4pf d4pi dηf dηi
√
(pf + p)2 (pi + p)2

×δ(p2 −m2) δ(p2
f −m2) δ(p2

i −m2) θ(λf ·pf ) θ(λf ·p)
× θ(λi ·p) θ(λi ·pi)δ4(pf + p− λfηf ) δ4(pi + p− λiηi)

×φf

((
pf − p

2

)2
)
φi

((
pi − p

2

)2
)

(pµf + pµi ),

(15)

where λµi,f are unit four-vectors proportional to the four-
momenta of the total system in the initial and final states,
λµi = Pµi /Mi and λ

µ
f = Pµf /Mf . These four-vectors can be

expressed in terms of the corresponding velocities, λ0 =
(
√
1− v2)−1 and �λ = �v (

√
1− v2)−1.

Except obviously for the current that behaves like a
four-vector, all quantities in the above expressions are
Lorentz invariant. This is achieved by the introduction
of auxiliary variables ηi and ηf , which play the role of an
off-energy shell invariant mass. When they are integrated
over, they give rise to the following three-dimensional δ
functions:

δ

(
�pi+�p−

�λi
λ0
i

(p0
i+p

0)
)

and δ

(
�pf+�p−

�λf
λ0
f

(p0
f+p

0)
)
. (16)

These relations are pertinent to the “point form” approach
referred to throughout this paper and account for the fact
that the velocity �v, defined as the ratio of the sum of the
momenta

∑
�pj and the sum of the kinetic energies

∑
ej ,
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Table 1. Elastic form factor F1(q
2) for the ground state: non-relativistic (N.R.) and “point form” (P.F.) calculations are

performed with Coulombian wave functions (model v0, see appendix B). The binding energies of the states, in units of the
constituent mass m, are given by E = 0.0842 (α = 1), E = 0.432 (α = 3) and E = 2.0 (α = 2π). In the last case, results for
two slightly different values of E are given for the “point form” results (see explanation in the text).

Q2/m2 0.01 0.1 1.0 10.0 100.0

α = 1
B.S. 0.984 0.856 0.309 0.137-01 0.213-03
N.R. 0.985 0.864 0.323 0.136-01 0.169-03
P.F. 0.984 0.853 0.299 0.974-02 0.343-04

α = 3
B.S. 0.996 0.962 0.705 0.139 0.503-02
N.R. 0.997 0.968 0.740 0.146 0.338-02
P.F. 0.995 0.949 0.621 0.563-01 0.228-03

α = 2π
B.S. 0.998 0.983 0.848 0.339 0.285-01
N.R. 0.999 0.988 0.886 0.379 0.190-01
P.F.(E =1.90) 0.614 0.398-01 0.111-03 0.126-06 0.127-09
P.F.(E =1.95) 0.187 0.143-02 0.193-05 0.199-08 0.200-11

is conserved for a given system [8]. They replace the con-
servation of momenta in the instant-form approach. It has
not been possible to show that they strictly follow from
describing physics on a hyperboloid surface [30]. Instead,
they can be obtained when this surface is taken as a hyper-
plane orthogonal to the four-velocity of the system, consis-
tently with the form of eq. (8) and the observation made
by Sokolov [22]. On the other hand, it can be checked
that, in the c.m., the wave function φ only depends on the
relative momentum of the two particles. Moreover, by di-
rect integration or after performing a change of variable,
one recovers that the current of a given system is given
by (〈J0〉, �〈J〉) = (1, �v), in agreement with the standard
normalization of the wave function,

∫
d�k

(2π)3 φ
2(�k) = 1. We

will come back to this normalization in sect. 5, when con-
sidering two-body currents.

The form factors we are interested in, F0(q2), F1(q2)
and F2(q2), can be calculated from eqs. (14), (15) in any
frame. However, they take a simpler expression in the
Breit frame, defined by �v = �vf = −�vi, with v expressed in
terms of the momentum transfer Q: v2 = Q2+(Mf−Mi)

2

Q2+(Mf+Mi)2
.

The electromagnetic form factors are more appropriately
expressed in terms of auxiliary quantities, F̃1(q2) and
F̃2(q2), which involve the time and spatial parts of the
current, respectively. We thus have:

F0(q2) =

√
Mf Mi

2m

∫
d�p

(2π)3
φf (�ptf )

m

ep
φi(�pti),

F̃1(q2) =
1 + v2

√
1− v2

∫
d�p

(2π)3
φf (�ptf )φi(�pti),

F̃2(q2)�v = − 1 + v2

√
1− v2

∫
d�p

(2π)3
φf (�ptf )

�p

ep
φi(�pti), (17)

together with

F1(q2)
√
2Mf 2Mi

= F̃1(q2) (Mf +Mi)− F̃2(q2) (Mf −Mi) ,

F2(q2)
√
2Mf 2Mi

= −F̃1(q2) (Mf −Mi) + F̃2(q2) (Mf +Mi) . (18)

The (Lorentz-) transformed momenta are defined as
(px, py, pz)ti,f = (px, py, p

z±v ep√
1−v2 ), together with ep =√

m2 + �p 2.
Contrary to eq. (6), there is no guarantee that current

conservation, eq. (2), is fulfilled by eqs. (17), (18). How
much it is violated for inelastic transition is of interest.

2.3 Non-relativistic form factors

Finally, we recall the non-relativistic expressions of the
elastic and inelastic form factors F0(q2), F1(q2) and
F2(q2), that can be calculated with the same wave func-
tions as used in eqs. (17). For a local interaction model,
like v0, where the simplest single-particle current is con-
served, they read

F0(q2) = F1(q2) =
∫

d�p
(2π)3

φf

(
�p− 1

4
�q

)
φi

(
�p+

1
4
�q

)
,

F2(q2)
�q

4m
= −

∫
d�p

(2π)3
φf

(
�p− �q

4

)
�p

m
φi

(
�p+

�q

4

)
. (19)

In this case, it can be checked that the form factors verify
the current conservation condition, eq. (2).

In a few cases, form factors involving Coulombian wave
functions can be calculated analytically. Their expression
is given in appendix B. For a non-local interaction model
like v1, which includes a semi-relativistic kinetic energy
or normalization factors m/e, the expression of the form
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Table 2. Elastic form factor F0(q
2) for the ground state: same as in table 1.

Q2/m2 0.01 0.1 1.0 10.0 100.0

α = 1
B.S. 1.024 0.887 0.313 0.128-01 0.18-03
N.R. 0.985 0.864 0.323 0.135-01 0.17-03
P.F. 0.949 0.813 0.256 0.43-02 0.33-05

α = 3
B.S. 1.123 1.080 0.767 0.132 0.394-02
N.R. 0.996 0.968 0.740 0.145 0.337-02
P.F. 0.682 0.641 0.366 0.16-01 0.15-04

α = 2π
B.S. 1.247 1.222 1.016 0.338 0.217-01
N.R. 0.997 0.987 0.885 0.378 0.189-01
P.F.(E =1.90) 0.175-01 0.435-03 0.28-06 0.54-10 0.79-14
P.F.(E =1.95) 0.162-02 0.335-05 0.86-09 0.14-12 0.18-16

Table 3. Inelastic form factors F0(q
2), F1(q

2) and F2(q
2),

for a transition from the ground state to the first radially
excited one: non-relativistic and “point form” results are ob-
tained with Coulombian wave functions (model v0), as in ta-
bles 1 and 2. The results correspond to α = 3 (Ei = 0.4322m,
Ef = 0.1036m for B.S. and 0.098m for N.R. and P.F.).

Q2/m2 0.01 0.1 1.0 10.0 100.0

B.S.
F0 0.538-01 0.781-01 0.172-00 0.537-01 0.163-02
F1 0.032-01 0.298-01 0.145-00 0.584-01 0.214-02
F2 0.369-00 0.340-00 0.165-00 0.665-02 0.217-04

N.R.
F0 0.032-01 0.296-01 0.151-00 0.550-01 0.121-02
F1 0.032-01 0.296-01 0.151-00 0.550-01 0.121-02
F2 0.369-00 0.342-00 0.174-00 0.636-02 0.140-04

P.F.
F0 −0.046-01 0.171-01 0.090-00 0.099-01 0.119-04
F1 0.101-01 0.372-01 0.140-00 0.283-01 0.139-03
F2 0.324-00 0.293-00 0.119-00 0.217-03 −0.118-04

factors may involve slightly different single-particle opera-
tors while preserving the Galilean invariance. These ones,
which are model dependent, will be given later on together
with the two-body currents that are then necessary to ful-
fill current conservation. These form factors will serve as
a useful benchmark for comparison with the “point form”
results, which should represent an improvement with re-
spect to the “exact” ones.

3 Results in impulse approximation

In this section, we complete results obtained in an earlier
paper for electromagnetic form factors [17] by providing
scalar ones. They should allow one to get a better insight
on how the “point form” approach does with respect to
the other ones. Results corresponding to different mass
operators are also presented.

Results are presented successively in three tables: for
the elastic form factor, F1(q2) (table 1), for the elastic
form factor, F0(q2) (table 2), and for an inelastic tran-
sition from the ground to the first radially excited state
(table 3). In the two first cases, three values of the cou-
pling constant have been considered: α = 1, α = 3 and
α = 2π, where α is related to the coupling constant g2

used in eq. (12) by α = g2/(4π). These values correspond
to a small, a moderate and a large binding energy (4%,
20% and 100% of the total mass of the constituents), re-
spectively. The last value is an extreme one since the total
mass is zero but, as sometimes happens, such cases better
reveal features pertinent to some approach. In the zero-
mass case, results for the “point form” approach essen-
tially vanish at Q2 
= 0 (F1) or even identically (F0). For
this reason, the corresponding results are given for two
values of the binding energy, E = 1.90m and E = 1.95m,
which allow one to approach the limit M = 0, while at
the same time values obtained with the Bethe-Salpeter
or non-relativistic approaches are essentially unchanged.
These results can provide qualitative information on a sys-
tem like the pion whose total mass is much smaller than
the sum of the masses of the constituents. For the inelastic
transition, results are presented for the three form factors
F0(q2), F1(q2) and F2(q2), and for one value of the cou-
pling constant, α = 3.

3.1 Elastic charge form factors

Results for the elastic form factor, F1(q2) (table 1), have
been already discussed in ref. [17]. As noticed there,
the non-relativistic calculation agrees relatively well with
the “exact” results. Reproducing at the same time the
low-momentum range, constrained by the charge associ-
ated to the conserved current, and the high-momentum
range, constrained by the Born amplitude, the form factor
F1(q2), calculated in the non-relativistic approach, cannot
be wrong by a large amount (up to log terms). As noticed
in ref. [17], the “point form” approach departs from the
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“exact” result at the highest values of Q2 that were con-
sidered. Results at Q2 = 100m2 clearly show the failure
of this approach in the impulse approximation for a large
coupling (α = 2π), but also at small couplings. This is ob-
viously due to the asymptotic behavior of the form factor
that varies like 1/Q6 instead of 1/Q4 for the “exact” and
non-relativistic calculations. As for the tendency of the
“exact” results to depart from the non-relativistic ones at
these high Q2 values, it signs the onset of log term correc-
tions in the former ones.

3.2 Elastic scalar form factors

Results for the scalar form factor F0(q2) (table 2) confirm
the overall agreement of the non-relativistic calculation
with the “exact” one. Contrary to F1(q2), some discrep-
ancy appears at Q2 = 0. In absence of a conserved charge
in this case, this points to the role of relativistic correc-
tions at low Q2. These ones remain moderate however,
including the extreme case α = 2π (M = 0). In compari-
son, for the “point form” results the discrepancy with the
“exact” ones is larger than for F1(q2), both at small and
large Q2. At low Q2, part of the effect is due to the factor
M/(2m) appearing in eq. (17), which has no counterpart
in the other approaches. This effect becomes especially
large when approaching the limit M = 0, a result which
is independent of the way the scalar form factor is defined
in eq. (1). The ratio of the F0(q2) and F1(q2) form factors
however depends on this definition, requiring some caution
about the conclusion that their comparison can suggest.
As there is a close relationship between these form fac-
tors in the Wick-Cutkosky model, both numerically and
algebraically2, we are rather tempted to think that, in the
“point form” approach, the form factor F0(q2) is strongly
suppressed with respect to F1(q2) at low Q2 in the limit
M → 0. At high Q2, the form factor rather scales like
1/Q8, instead of 1/Q4, hence a larger discrepancy with
the other results than for F1(q2).

3.3 Inelastic form factors

When making a comparison with the “exact” results, it
was noticed in ref. [17] that, for the “point form” results,
a relative change in sign of the form factors F1(q2) and
F2(q2) occurs, preventing from fulfilling the current con-
servation constraint given by eq. (2). The fact that the
non-relativistic calculation does better than the “point
form” one is confirmed by results for the scalar form fac-
tor, F0(q2). In particular, at low Q2 the first one has the
right sign while the other one has not. However, the dis-
crepancy in size is large in both cases. Much better than
the elastic case, the present results evidence the role of
relativistic corrections. Anticipating on the next section,

2 The two form factors F0(q
2) and F1(q

2) are equal in the
Born approximation and from higher orders, one expects log
corrections leading to F1(q

2) = 2F0(q
2) in the ultra-relativistic

domain.

let us mention that a non-zero value of F0(q2) at Q2 = 0
can be obtained by adding in the non-relativistic approach
exchange currents (pair term). At high Q2, many state-
ments made for the elastic case could be repeated here.
They concern the ratio F0/F1, the comparison with non-
relativistic calculations and the fall-off of the form factors
in the “point form” approach.

3.4 Other mass operators

Results presented in tables 1-3 have been obtained with
a wave function issued from a Coulomb-type potential
(model v0). An important question is whether qualitative
results obtained so far extend to other interaction mod-
els. For comparison, we used a wave function issued from
a linear mass operator, eq. (11), with an interaction given
by eq. (12). In this calculation, (model v1), the coupling
constant has been adjusted to reproduce the same bind-
ing energy as the one obtained with the Bethe-Salpeter
equation and α = 3, giving α(v1) = 1.775. The difference
in the couplings is simply due to the fact that the Bethe-
Salpeter approach accounts for retardation effects which
effectively decrease the strength of the interaction [31,32].
The model v1 does not reproduce the spectrum of the
Wick-Cutkosky model as well as the model v0. The bind-
ing energy of the first radial excitation is 0.1320m instead
of 0.1036m. Therefore, a comparison of form factors from
this model with the exact ones is less instructive. However,
a comparison with a non-relativistic–type calculation, us-
ing eqs. (19), may still be useful.

No major qualitative difference with previous results
is seen at small as well as high Q2 (see table 4). Quan-
titative differences can be traced back to the interaction
model itself. It provides a slightly more rapid decrease of
the wave function in momentum space (roughly given by
an extra factor (ek +m)/(2ek) for small binding energy).
This is a consequence of the semi-relativistic kinematics in
eq. (10) together with normalization factors in eq. (12). As
a result, the wave function at the origin, ψr(0), is smaller
(see sect. 4 for the role of this quantity).

As a side remark, we notice that the asymptotic values
for the form factors in the Coulombian model, v0, and the
model v1 have not yet been reached at momentum trans-
fers as large as Q2/m2 = 100. For v1, the value is too
large by ∼ 15% ((Q4/m4)F (Q2)

∣∣
Q2/m2=100

� 7.7 instead
of 6.7 asymptotically), while for v0 it is too low by ∼ 10%
((Q4/m4)F (Q2)

∣∣
Q2/m2=100

� 34 instead of 38). The ra-
tio of the asymptotic values, 0.18, is mainly due to the
difference in the values of the wave functions at the origin
(0.24), of the factor (ek+m)/(2ek) at large k (0.5) and of
the coupling constants (1.4).

The origin of the above quantitative differences can be
checked by using a model more in the spirit of the mass
operator of eq. (10), like the one incorporating corrections
to the interaction as given by eq. (13). In this model, de-
noted v2, the coupling is again fitted to the binding en-
ergy obtained with the Bethe-Salpeter equation, giving
α(v2) = 1.327, which is quite close to the one for the



B. Desplanques and L. Theußl: Form factors in the “point form” of relativistic quantum mechanics 101

Table 4. Elastic form factors F0(q
2) and F1(q

2), calculated
with wave functions issued from the interaction models v1,
given by eq. (12), and v2, which includes the correction
eq. (13). The couplings, α(v1) = 1.775 and α(v2) = 1.327,
have been determined to reproduce the binding energy E =
0.4322m of the Bethe-Salpeter equation (α = 3). Results for
the model v0 (α(v0) = 1.241) and B.S. are recalled for com-
parison.

Q2/m2 0.01 0.1 1.0 10.0 100.0

N.R. (v1)
F0 = F1 0.995 0.953 0.640 0.665-01 0.774-03

P.F. (v1)
F0 0.710 0.651 0.303 0.596-02 0.281-05
F1 0.992 0.924 0.493 0.205-01 0.464-04

N.R. (v2)
F0 = F1 0.996 0.966 0.727 0.132 0.279-02

P.F. (v2)
F0 0.689 0.645 0.358 0.140-01 0.117-04
F1 0.994 0.946 0.603 0.494-01 0.177-03

N.R. (v0)
F0 = F1 0.997 0.968 0.740 0.146 0.338-02

P.F. (v0)
F0 0.682 0.641 0.366 0.16-01 0.15-04
F1 0.995 0.949 0.621 0.56-01 0.23-03

B.S.
F0 1.123 1.080 0.767 0.132 0.394-02
F1 0.996 0.962 0.705 0.139 0.503-02

Coulombian model α(v0) = 1.241. The corresponding re-
sults for the form factors are also shown in table 4. As ex-
pected, they get closer to those quoted as non-relativistic
ones or to the exact ones. However, the form of the inter-
action prevents one from determining in an easy way the
expression of the associated two-body currents. Keeping
in mind that this extra set of results ensured a continu-
ous transition between the results obtained with different
interaction models, we will only consider in sect. 5 the
simplest case, v1, for which two-body currents can also be
derived without too much difficulty, while remaining close
to realistic ones.

4 Remarks concerning form factors at low
and high Q2

Previous “point form” results obtained in the single-
particle current approximation were found to significantly
depart from the “exact” ones. We analyze on general
grounds the role of further contributions to the current in
correcting form factors, successively at low and high Q2.
In one case, they concern low-energy theorems and consis-
tency properties, while in the other, they involve the Born
amplitude.

4.1 Analysis of results at low Q2

A detailed examination of the “point form” calculation
of form factors shows that a large part of the difference
with the non-relativistic calculation can be traced back to
the relativistic kinematical boost effect [2]. The quantity
pz ± Q

4 , which appears in the non-relativistic Breit-frame
expression of the form factor for the ground state for in-
stance (Coulombian case)

IN.R. ∝
∫

d�p

(
κ2 + p2

x + p2
y +

(
pz − Q

4

)2
)−2

×
(
κ2 + p2

x + p2
y +

(
pz +

Q

4

)2
)−2

, (20)

is replaced by (pz ± v ep)/
√
1− v2 to give

IP.F. ∝
∫

d�p

(
κ2 + p2

x + p2
y +

(
pz − v ep√
1− v2

)2
)−2

×
(
κ2 + p2

x + p2
y +

(
pz + v ep√
1− v2

)2
)−2

. (21)

To emphasize differences with the non-relativistic expres-
sion, we rewrite the term (pz ± v ep)/

√
1− v2 as

pz ± v ep√
1− v2

=
pz√
1− v2

± Q

4
2
√
m2 + p2

M
. (22)

This differs from the non-relativistic expression in two
ways: the factor multiplying pz, 1/

√
1− v2, and the factor

multiplying Q/4, (2
√
m2 + p2)/M . They are successively

analyzed in the following.

4.1.1 The factor 1/
√
1− v2

A consequence of the relativistic boost is the appearance
of the factor 1/

√
1− v2 multiplying pz. As outlined in ap-

pendix B, a simple change of variable allows one to re-
move it from the integrand in eq. (21) and to factor out
the quantity

√
1− v2. Up to this factor and provided that

the factor (2
√
m2 + p2)/M can be replaced by 1 (see next

section), the integral, eq. (21), then becomes identical to
its non-relativistic limit, eq. (20). Notice that the result
involves the very dependence of the wave function on the
momentum. To evidence the ambiguous character of the
above change of variables, it suffices to replace the fac-
tor at the denominator of the wave function employed in
eq. (20), κ2+�p 2, by the equivalent κ2+e2p−m2. If ep hap-
pened to combine with an interaction term, as discussed
in the next subsection, to give an overall mass term, there
would be no more momentum dependence and the result
would be quite different. In this case, however, the re-
placement of the genuine momentum dependence into an
energy dependence has no theoretical foundation but this
may be different for other factors entering the calculation.



102 The European Physical Journal A

4.1.2 The factor (2
√
m2 + p2)/M

The extra factor (2
√
m2 + p2)/M which multiplies the

quantity Q/4 in eq. (22) is always larger than unity, both
because the numerator, 2

√
m2 + p2, is larger than 2m

and the total mass of the system, M , at the denominator
is smaller than the same quantity. In some sense, the mo-
mentum transfer Q entering the non-relativistic calcula-
tion should be replaced by an effective one, which is larger,
leading to an effective scaling of the electromagnetic prop-
erties similar to that one found in ref. [2]. The effect is
especially large when the average momentum of particles
composing the system under consideration is large, as is
in the nucleon wave functions employed in this latter ref-
erence, or when the total mass of the system goes to zero.

Many examples indicate that one should be cautious
about effects involving a factor like (2

√
m2 + p2)/M . Of-

ten, the kinetic energy ep combines with the potential en-
ergy V to give the total energy, M . In such a case, results
based on the above expression, or a similar one, could be
affected. Illustrations include the nuclear mean-field ap-
proach, the Siegert theorem, the current in relation with
symmetry arguments, the dependence of the asymptotic
light-front components on the front orientation [33]. Some
detail can be found in ref. [34].

Assuming that the observation made in the above ex-
amples also works in the present case, one should add in
eq. (22) an interaction term V so that the factor multi-
plying Q/4 now reads (2

√
m2 + p2 + V )/M . Taking into

account that the numerator acting on a wave function
is nothing but M , the factor may be equal to unity, as
the analysis of the triangle Feynman diagram tends to
show [23]. This immediately removes the scaling of elec-
tromagnetic properties mentioned at the beginning of this
subsection, making the results closer to the exact and the
non-relativistic ones.

The idea behind getting together those contributions
is that, when a boost is made, not only the kinetic energy
which enters the total mass of a system is boosted, but
also the potential energy part is. As the various examples
mentioned in this subsection show, one should therefore
look with much caution at the present results in the “point
form” approach, especially those at small Q2 like the scal-
ing of some properties with the inverse of the total mass
of the system, M .

4.2 Analysis of results at high Q2

At high Q2 it is expected that form factors are dominated
by the contribution of the full Born amplitude represented
by the Feynman diagram shown in fig. 2. It is on this ba-
sis that Alabiso and Schierholz made predictions for form
factors in the asymptotic domain [14]. All calculations em-
ploying wave functions obtained from some equation to-
gether with some interaction provide a contribution to the
full diagram shown in this figure. Using a perturbative-
type approach, this contribution can be calculated. By
comparing it to the full diagram, one can determine how

Fig. 2. Virtual scalar particle or photon absorption on a two-
body system in Born approximation. The kinematical defini-
tions refer to the Breit frame. They can be used for both the
Feynman diagram and the non-relativistic (or instant-form)
approach where the 3-momenta are conserved at all vertices,
but not in the “point form” approach where a different conser-
vation law holds.

it does in predicting the high-Q2 behavior of form factors
with respect to the underlying theory. What is missing
may be incorporated in two-body currents. In this sub-
section, we analyze the contribution of each approach in
the Born approximation. This follows lines developed in
various papers, especially in ref. [15].

Beginning with the non-relativistic calculation for the
ground state, it is found that the form factors at high Q2

can be expressed as the product of the Born amplitude
times the squared wave function at the origin (in configu-
ration space):

F0(q2)|Q2→∞ = F1(q2)|Q2→∞

= 2ψr(0)ψp
(
p=

Q

2

) ∣∣∣∣
Q2→∞

= 2Born (1 diagr.)|Q2→∞ ψ2
r(0) . (23)

The wave function at the origin, ψr(0), should be deter-
mined numerically. In the Coulombian case referred to in
tables 1 and 2, it is given by ψ2

r(0) = κ3/π. As for the
Born amplitude in the non-relativistic case, it reads

Born (1 diagr., N.R.)|Q2→∞ =
g2

µ2 +Q2/4
4m
Q2

. (24)

It corresponds to the product of a term involving the in-
teraction and the propagator for the two constituent par-
ticles, both being calculated in any frame but consistently
with Galilean invariance. In order to easily identify the
interaction term, the mass of the exchanged boson, µ, is
written explicitly even though it is taken as zero in ac-
tual calculations performed later on. From the above re-
sult, it is immediately seen that the form factors scale
like 1/Q4, factors 1/Q2 being contributed separately by
the boson and the constituent propagators in fig. 2, in
agreement with the standard counting rules for determin-
ing the high-Q2 behavior of form factors. This roughly
explains the behavior of form factors evidenced by the
“exact” results shown in tables 1 and 2 and, of course, in
the non-relativistic case.

The above result can be refined by considering the full
Feynman diagrams shown in fig. 2. These ones can be split
into two terms where the intermediate constituent propa-
gates with positive and negative energies. The details may
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depend on the formalism or on the frame. The expressions
have a form similar to eq. (23), except that scalar and
charge form factors now differ and involve corrections of
relativistic order:

F0(q2)
∣∣
Q2→∞ = 2 (B.A.0)|Q2→∞

N

4m
ψ̃2
r(0),

F1(q2)
∣∣
Q2→∞ = 2 (B.A.1)|Q2→∞

N

Ei +Ef
ψ̃2
r(0),

with ψ̃r(0) =
∫

d�p
(2π)3

m

ep
φ(�p). (25)

The normalization constant N is defined in eq. (C.2) and
the factors 4m and Ei+Ef cancel a corresponding factor
in the Born amplitude such that we recover the definition
of the form factors, see eq. (1). For the instant-form for-
malism and in the Breit frame, the Born amplitudes in
the asymptotic limit read

B.A.0 =
g2

µ2 +Q2/4
1

2e3Q/4

×
(

2m
e3Q/4 − eQ/4

+
2m

e3Q/4 + eQ/4

)

=
g2

µ2 +Q2/4
2m

e23Q/4 − e2Q/4
, (26)

B.A.1 =
g2

µ2 +Q2/4
1

2e3Q/4

×
(
e3Q/4 + eQ/4

e3Q/4 − eQ/4
+

−e3Q/4 + eQ/4

e3Q/4 + eQ/4

)

=
g2

µ2 +Q2/4
2eQ/4

e23Q/4 − e2Q/4
. (27)

We omit normalization factors m/e in the above equa-
tions. As mentioned previously, these ones have to be ac-
counted for when the corresponding contributions to form
factors are calculated, see eq. (25). In the non-relativistic
limit, the positive energy part of the constituent propaga-
tor allows one to recover the non-relativistic result given
by eq. (24). At very high Q2 the total form factors are
identical to the non-relativistic ones (the normalization
factor N

4m ψ̃
2
r(0), of the order of 1, put apart), but evidence

a difference in the relative contributions of the different
parts of the constituent propagator:

F0(q2)|Q2→∞=2
g2

µ2+Q2/4
4m
Q2

(
2
3
+
1
3

)
N

4m
ψ̃2
r(0),

F1(q2)|Q2→∞=2
g2

µ2+Q2/4
4m
Q2

(
4
3
− 1
3

)
N

4m
ψ̃2
r(0). (28)

The impulse approximation calculation of asymptotic
form factors in the “point form” approach could be per-
formed along the above lines, with some modifications
concerning the kinematics. The structure of the result is
similar to eq. (24),

Born (1 diagr., P.F.)|Q2→∞ =
g2

µ2 + Q̃2/4
4m
Q̃2

, (29)

but the momentum transfer Q2 is replaced by Q̃2 =
Q2

[
1 +Q2/(4M2)

]
, recovering what was obtained in

ref. [8]. For the electromagnetic probe, an extra factor
(1 + v2)/(1 − v2) has to be added, in relation with the
different coupling to the external probe. This is sufficient
to explain the overall behavior of form factors shown in ta-
bles 1 and 2. Careful examination however indicates that
there are other corrections than the one given in eq. (29)
that give contributions with a log character.

In practice, depending on precise details in the formal-
ism, the various contributions in eqs. (26), (27) may have
a different weight but the overall result, eq. (28), should
be recovered. This evidently applies to the “point form”
results. In this case however, the situation is somewhat
different because one has to completely rely on two-body
currents to get the right asymptotic power law behavior
of form factors.

5 Two-body currents: expressions and results

We consider here specific models for two-body currents.
They are constructed via the requirement of current con-
servation and reproducing the Born amplitude. Methods
allowing one to get these currents as well as their limita-
tions are known [35,36]. They are adapted to our purpose
in the case of the relativized model, v1. After discussing a
norm correction in relation with the ratio F0/F1, which in
some sense also involves two-body currents, a presentation
of numerical results is made.

While the above-mentioned two-body currents have
proved useful in many circumstances, it is not sure that
they are sufficient in all cases. As mentioned in the intro-
duction, recent works suggest that there may be other two-
body currents to be considered when going away from the
Breit-frame case or the q+ = 0 one [26–28]. However, the
covariance requirement that motivated their introduction
cannot be invoked here where this property stems from the
formalism itself. Moreover, there is no known constraint,
like current conservation or reproducing the behavior of
the Born amplitude, that can justify their consideration
in the present work. Only the comparison with expected
results can therefore provide some information on the rel-
evance of related contributions within the “point form”
approach.

5.1 Expressions of two-body currents

We already mentioned that two-body currents are re-
quired in most approaches to satisfy current conservation
and could also be required to get the right Born ampli-
tude. This second property may not be related to the first
one, current conservation holding up to terms that are
gauge invariant by themselves.

There are methods that allow one to derive contribu-
tions that restore current conservation but the result may
not be quite satisfying, either because it misses the Born
amplitude or because it is very cumbersome. Here, we fa-
vor the high-momentum-transfer region, and therefore the
Born amplitude, and simplicity.



104 The European Physical Journal A

5.1.1 Two-body currents motivated by current conservation
in the non-relativistic case

We begin with an interaction model that represents an
extension of the model v1 of eq. (12) to any frame (in the
instant form):

Vint(�p1, �p2, �p1
′, �p2

′) = −δ(�p1 + �p2 − �p1
′ − �p2

′)

×
√

m

ep1

m

ep2

g2

µ2 + (�p2 − �p2
′)2

√
m

ep′1

m

ep′2
. (30)

The corresponding equation to be solved in principle gen-
eralizes eq. (10):

(E − ep1 − ep2)Φ(�p1, �p2) =∫∫
d�p1

′

(2π)3
d�p2

′

(2π)3
Vint(�p1, �p2, �p1

′, �p2
′)Φ(�p1

′, �p2
′). (31)

Though the set of eqs. (30), (31) is not the one we will use
for actual calculations, it offers the great advantage, due to
its close relation to a field-theory approach, that currents
take a relatively simple form, allowing one to illustrate
some of the peculiarities relative to their derivation. It is
noticed that the solutions for the massM only make sense
in the non-relativistic limit as they in principle depend on
the total momentum. A complete interaction kernel would
be required to make the solutions meaningful so that to
fulfill relativistic covariance. This is not however necessary
for the following developments.

The single-particle current stems from the same field
theory that motivates the above interactions. It is given
for particle 1 by

J0
I.A. =

ep1 + ep′1
2√ep′1 ep1

δ(�q + �p1 − �p1
′) ,

�JI.A. =
�p1 + �p1

′

2√ep′1 ep1
δ(�q + �p1 − �p1

′). (32)

The above current provides a non-zero four-divergence
which, using eq. (31), can be written as

qµ ·JµI.A. = δ(�q + �p1 + �p2 − �p1
′ − �p2

′)

×
√

m

ep′1

m

ep′2

g2

µ2 + (�p2 − �p2
′)2

√
m

ep1

m

ep2

×
(
ep′1 − ep′1−q
2 ep′1−q

+
ep1+q − ep1
2 ep1+q

)
. (33)

This has to be canceled by the four-divergence of a two-
body current [36], which can be easily obtained in the
present case:

�Jint(�q, �p1, �p2, �p1
′, �p2

′) = δ(�q + �p1 + �p2 − �p1
′ − �p2

′)

×
√

m

ep′1

m

ep′2

g2

µ2 + (�p2 − �p2
′)2

√
m

ep1

m

ep2

×
(

2 �p1
′ − �q

2 ep′1−q (ep′1+ep′1−q)
+

2 �p1 + �q

2 ep1+q (ep1+ep1+q)

)
. (34)

Notice that one can easily recognize in this equation the
structure of a pair term. By construction, it allows one to
satisfy current conservation. When checking this property,
it is found that the one- and two body-currents provide
the following contributions (in the operatorial sense):

�q · �JI.A. = (ep1 O(1)−O(1) ep1),

�q · �Jint = (V O(1)−O(1)V ),

where O(1) just represents the charge operator. After
adding a contribution (ep2 O(1)−O(1) ep2), which is zero,
they combine to give

�q ·( �JI.A. + �Jint) = H O(1)−O(1)H, (35)

The last equality, taken between eigen-states of the Hamil-
tonian, is the product of the energy transfer, q0, times the
charge operator. This provides another illustration of how
contributions involving the kinetic energy and the poten-
tial energy separately add together to give the total energy
of the system. We notice that the above two-body current
does not contain any 1/q2 factor as some recipe enforcing
current conservation,

Jµ → Jµ − qµ J ·q /q2, (36)

would suppose [8]. Notice that in the small-q limit, the
two-body current obtained in eq. (34) has the schematic
form −∂qµ

(“J · q”), where “J · q” is given by the right-
hand side of eq. (33). It therefore significantly differs from
the term introduced in eq. (36) and, evidently, it has no
singular character in the limit q → 0.

5.1.2 Two-body currents motivated by the Born amplitude
in the non-relativistic case

The contribution derived above is not sufficient to recover
the Born amplitude. Starting from this requirement, an-
other two-body current is obtained, which, underlying the
theoretical model under consideration, also contributes to
the time component of the current, contrary to the inter-
action term. The extra term to be added to eq. (34) is
self-gauge invariant. To emphasize this feature, it is writ-
ten in a way where this property is readily satisfied, i.e.
by introducing the photon polarization εµ:(
ε0 J0

∆B − �ε · �J∆B
)
(�q, �p1, �p2, �p1

′, �p2
′) =

δ(�q + �p1 + �p2 − �p1
′ − �p2

′)

×
√

m

ep′1

m

ep′2

g2

µ2 + (�p2 − �p2
′)2

√
m

ep1

m

ep2

(
ε0 �q − �ε q0

)

·
(

2 �p1
′ − �q

2 ep′1−q (ep′1+ep′1−q) (ep1+ep2−ep′2+ep′1−q)

− 2 �p1 + �q

2 ep1+q (ep1+ep1+q) (ep′1+ep′2−ep2+ep1+q)
)
. (37)

While deriving these currents, off-shell effects have been
neglected, which amount to corrections of the order g4.
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This is done consistently with neglecting higher-order con-
tributions in the amplitude. Notice that the subscript ∆B
in eq. (37) and later on does not refer to the Born am-
plitude itself. It represents the contribution that has to
be added to the impulse approximation plus interaction
terms in order to recover the Born amplitude.

While current conservation tells us nothing about two-
body contributions in the case of a scalar probe, requiring
that the Born amplitude provided by the Feynman dia-
gram of fig. 2 be reproduced, imposes to consider further
terms. These ones, for an interaction of particle 1 with the
external probe, are given by

S∆B(�q, �p1, �p2, �p1
′, �p2

′) = δ(�q + �p1 + �p2 − �p1
′ − �p2

′)

×
√

m

ep′1

m

ep′2

g2

µ2 + (�p2 − �p2
′)2

√
m

ep1

m

ep2

×
(

2m
2 ep′1−q (ep1 + ep2 − ep′2 + ep′1−q)

+
2m

2 ep1+q (ep′1 + ep′2 − ep2 + ep1+q)

)
. (38)

It is noticed, not surprisingly, that the contributions from
eqs. (37), (38) to form factors identify to the second term
on the r.h.s. of eqs. (26), (27) in the same limit. This is
due in part to the instant-form formalism which underlies
both expressions.

5.1.3 Two-body currents motivated by current conservation
in the “point form” approach

The first step in deriving two-body currents for calculating
form factors in the “point form” is the definition of the in-
teraction corresponding to the interaction mentioned pre-
viously. Its invariant form involves the four-velocity λµ of
the system which we are interested in:

Vint(p1, p2, p
′
1, p

′
2) = −

√
m

λ·p1

m

λ·p2

∫
dη

× g2 δ4(p1 + p2 − p′1 − p′2 − λη)
µ2 − (p2 − p′2)2 + (λ·(p2 − p′2))2

√
m

λ·p′1
m

λ·p′2
, (39)

with λ ·(p1 − p2) = λ ·(p′1 − p′2) = 0. Equation (31) then
reads

(M−λ·(p1+p2))
∫

dηδ4(p1+p2−λη)Φ(p1, p2)=
1

(2π)3

×
∫∫

d4p′1 d
4p′2 V (p1, p2, p

′
1, p

′
2) δ(p

′
1
2−m2) δ(p′2

2−m2)

× (p′1 + p′2)
2

∫
dη′ δ4(p′1 + p′2 − λη′)Φ(p′1, p

′
2). (40)

It is noticed that the extra term at the meson propaga-
tor in eq. (39), (λ · (p2 − p′2))

2, is a consequence of the
kinematical character of the boost transformation in the
“point form” formalism. While the mass operator corre-
sponding to the above interaction is independent of the

velocity, as it should be, the appearance of λµ is some-
what unusual from a field-theory point of view. It leads to
specific off-shell effects that change the asymptotic depen-
dence from Q2 to Q4 in the meson propagator appearing
in the Born amplitude, see eq. (29). It partly explains the
too fast drop-off of form factors calculated in the impulse
approximation in the “point form” approach.

A minimal set of two-body currents can be obtained
by calculating the divergence of the current accounted for
in impulse approximation,

2λµf λf ·p+ 2λµi λi ·p− 2 pµ√
2λf ·p

√
2λi ·p

δ(�q + �Pi − �Pf ), (41)

and determining what is needed to recover current conser-
vation, similarly to what was done in the non-relativistic
case, see eqs. (32)-(34). Using the relation qµ = Mf λ

µ
f −

Mi λ
µ
i , it is found that the four-divergence of the single-

particle current can be expressed in terms of the interac-
tion and is given by

qµ ·JµI.A. =√
m

λf ·p1f

m

λf ·p2f
g2 δ(�q + �Pi − �Pf )

√
m

λi ·p1i

m

λi ·p2i

×λi ·λf
(
λf ·p2f

λi ·p2f

1
H(λi)

− 1
H(λf )

λi ·p2i

λf ·p2i

)
, (42)

where H(λ) = µ2 − (p2i − p2f )2 + (λ · (p2i − p2f ))2. The
term of eq. (42) has to be canceled by the contribution
of a two-body current, which has to be guessed for some
part. A possible solution is given by

Jµint(q, p1i, p2i, p1f , p2f ) =√
m

λf ·p1f

m

λf ·p2f
g2 δ(�q + �Pi − �Pf )

√
m

λi ·p1i

m

λi ·p2i

×
[ (

(λf ·p2f )λ
µ
f − pµ2f

Mi (λi ·p2f ) H(λi)
+

(λi ·p2i)λ
µ
i − pµ2i

H(λf )Mf (λf ·p2i)

)

+
1

H(λf )
Xµ 1

H(λi)

]
. (43)

with

Xµ =
(
(λi + λf )·(p2i − p2f )

) (
Mf p

µ
2f −Mi p

µ
2i

Mf Mi

− Mf λ
µ
f +Mi λ

µ
i

Mf Mi (Mi +Mf )
(Mf λf ·p2f −Mi λi ·p2i)

)
. (44)

Terms retained here resemble those obtained by using
the minimal coupling principle but the output, depend-
ing on the order of the operators, is not necessarily
unique, holding up to gauge-invariant terms proportional
to λi·λf (Mf λ

µ
f +Mi λ

µ
i )− (Mf λ

µ
i +Mi λ

µ
f ) for instance.

This uncertainty especially affects the last term in eq. (44).
It can be removed for a part by requiring to recover the
Born amplitude (see below).
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Fig. 3. Time-ordered triangle diagrams contributing to the
absorption of a photon on a bound system.

The above current could solve some of the problems at
low Q2 related to current conservation. Again, we notice
that it does not contain any 1/Q2 factor. The appearance
of the total mass M at the denominator in the above two-
body current is not quite expected and, most probably,
results from enforcing current conservation. By itself, the
presence of this quantity in the current is not surprising,
as it is well known that the momentum in the “point form”
approach, and therefore the current, depends on the inter-
action. However, it can be checked that the above current
does not help in solving the vanishing of the elastic scalar
form factor in the limit M → 0, which also shows up at
small momentum transfers.

5.1.4 Two-body currents motivated by the ratio F0/F1 in
the limit M → 0

While considering the problem of the ratio F0/F1 in the
limit M → 0, it is useful to examine the simplest trian-
gle Feynman diagram describing the interaction of a two-
body system with an external probe. This one splits into
six different time-ordered diagrams, partly shown in fig. 3.
The first of them (a) represents the standard contribution
that possibly involves the wave function of the system.
The second one (b) is a typical Z-type diagram. The third
and fourth ones (c and d) are less known. They involve
two particles with negative energy or, equivalently, going
backward in time. Looking now at the problem raised by
the ratio F0/F1, we found that the required two-body cur-
rents also contribute to the norm, defined by the charge
associated with the conserved current, F1(q2 = 0) = 1.
This differs from standard two-body currents, in the two-
nucleon system for instance, or in eq. (34), which do not
contribute to the charge (in the usual approach where the
interaction does not depend on the energy). The extra cur-
rents involve the double Z-diagram shown in fig. 3c. They
are not especially suppressed for the scalar coupling model
considered here and they contribute destructively to the
norm so that to cancel the normal contribution (fig. 3a)
in the limit M → 0. Such a result can be checked by
calculating the contribution of the triangle diagram of the
figure in the case where the momentum dependence of the
bound-state vertex function is ignored (see also ref. [36]):∫

d4p
1

m2 − (Pi − p)2 − iε

1
m2 − (Pf − p)2 − iε

×P 0
i + P 0

f − 2 p0

m2 − p2 − iε
=

2iπ
∫
d3p

1
(2 ep)3

(
2 ep

(2 ep −M)2
− 2 ep

(2 ep +M)2

)
, (45)

where P 0
i and P 0

f are expressed in the c.m. system, P 0
i =

P 0
f =M . For the scalar case, one gets∫
d4p

1
m2 − (Pi − p)2 − iε

1
m2 − (Pf − p)2 − iε

× 2m
m2 − p2 − iε

=

2iπ
∫

d3p
1

(2 ep)3

(
2m

(2 ep −M)2
+

4m
2 ep (2 ep −M)

+
4m

2 ep (2 ep +M)
+

2m
(2 ep +M)2

)
. (46)

In eqs. (45), (46), the first term on the r.h.s. represents the
standard non-relativistic contribution. The extra terms,
which should also occur in the instant form of relativistic
quantum mechanics, greatly complicate the calculation of
form factors. They cannot be neglected however and, in
fact, their introduction seems to provide more consistency
in the developments. The matrix element of the current
in the “point form” approach, eq. (15), appears to be pro-
portional to the factorM because this one has been intro-
duced as an overall factor. In the Bethe-Salpeter approach,
eq. (3), this factor appears dynamically. The fact that the
four-vector current matrix element should be proportional
to Pµi + Pµf automatically ensures that it is proportional
to M at �P = 0 (without requiring the introduction of this
factor by hand). This is just a consequence of the extra
current discussed above.

At the same time as the front factorM is removed from
the r.h.s. of eq. (15), it disappears from the expression of
the scalar form factor, eq. (14) and eq. (17). This form
factor does not vanish anymore in the limit M → 0. The
ratio F0(0)/F1(0) stemming from eqs. (45), (46) is 1.5 in
the limitM → 0, while the Wick-Cutkosky result is 1.25 3.
Finally, to recover the full Born amplitude, one can use the
standard definition of the current without renormalizing
its expression, somewhat arbitrarily, by a factor 1/M in
order to compensate the front factor M in eqs. (14), (17).

The discussion of the above contributions would re-
quire a full paper by itself and, as far as we can see, they
do not help in solving the current conservation problem
considered in this subsection. In practice, we will account
for them by multiplying the single-particle current oper-
ator by a constant factor suggested by the expression of
eq. (45):

F = 1−
(
M − 2 ē
M + 2 ē

)2

=
8M ē

(M + 2 ē)2
, (47)

where ē represents an average value of
√
m2 + p2. The

two-body nature of the correction is not explicit, but cor-
responding to an off-shell effect, it can be made trans-
parent by expressing the factor M − 2e in terms of the

3 Notice that the light-front approach seems to do correctly
with respect to this problem. The ratio F0(0)/F1(0) is finite in
the limit M → 0 and its value, 7/6, is close to the expected
one. Furthermore, a contribution like the double Z-diagram of
fig. 3c vanishes in this approach for the model considered here.
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interaction using eq. (31). The correction is at least of
the second order in this interaction and while its effect is
small for weakly bound systems, it it certainly consider-
able when the total mass goes to zero. Interestingly, the
above example gives a further illustration of how a term
proportional to the kinetic energy, ep (first term on the
r.h.s. of eq. (45)) turns into a term proportional to the
total mass by incorporating interaction effects.

The above approximation would certainly be ques-
tionable for an exact calculation but, being interested in
whether some of the striking features evidenced by the im-
pulse “point form” results can be repaired for some part by
adding two-body currents, we believe it should not affect
the developments presented below. On the other hand,
it allows one to continue to work with a conserved cur-
rent, including the single- and the two-body parts given
by eqs. (43), (44).

5.1.5 Two-body currents motivated by the Born amplitude
in the “point form” approach

When considering the further requirement of reproducing
the Born amplitude, an extra contribution arises. This one
is obtained by subtracting from this amplitude the con-
tribution accounted for in the impulse approximation cal-
culation, eqs. (14), (15), and that one accounting for cur-
rent conservation, eqs. (43), (44) (see also appendix D).
As current conservation holds for the Born amplitude, it
also holds for the above difference in the same limit, i.e.
at the order g2. Neglected contributions are of the order
g4, which in any case are discarded when limiting our-
selves to the Born amplitude. A few details are given in
appendix D; here we give an expression where the two-
body contribution is written in a way where current con-
servation is manifest, analogously to eq. (37):

εµ ·Jµ∆B(q, p1i, p2i, p1f , p2f ) =√
m

λf ·p1f

m

λf ·p2f

g2

4
δ(�q + �Pi − �Pf )

√
m

λi ·p1i

m

λi ·p2i

×µ2 − (p2i − p2f )2 + λi ·(p2i − p2f )λf ·(p2f − p2i)
λf ·p2f λi ·p2iH(0)H(λf )H(λi)

× 2 ē
M

εµ ·
(
Y µ(p2i − p2f )·q − (p2i − p2f )µ Y ·q

)
, (48)

with

Y µ = λµf λf ·p2f + λµi λi ·p2i − 1
2
(pµ2f + pµ2i). (49)

In deriving this expression, we assume the relationship

qµ = λµf Mf − λµi Mi � M

ē
(λµf λf ·p2f − λµi λi ·p2i), (50)

where the replacement of λ·p by an average value ē is in
accordance with neglecting contributions of order higher
in g2.

For the scalar probe, the extra contribution required
to reproduce the Born amplitude is given by

S∆B(q, p1i, p2i, p1f , p2f ) =√
m

λf ·p1f

m

λf ·p2f

g2

2
δ(�q + �Pi − �Pf )

√
m

λi ·p1i

m

λi ·p2i

×
[

1
H(0)

(
m

λi ·p2i λi ·p2f
+

m

λf ·p2f λf ·p2i

)

−
(

mλi ·(p2i − p2f )
λi ·p2f H(0)H(λi)

+
mλf ·(p2f − p2i)
λf ·p2iH(0)H(λf )

)]
. (51)

Notice that eqs. (48), (51) correspond to contributions to
the Born amplitude that are not generated in another way
and that there is therefore no double counting. Examina-
tion of the two-body currents, eqs. (43), (44) and (48),
(51), which involve a neutral-boson exchange, shows that
they are much more sophisticated than standard ones in
the same case. They exhibit unusual features, like the ap-
pearance of the boson propagator twice, which generally
characterizes the contribution of a charged boson inter-
acting with an external field.

5.2 Results involving two-body currents

In this subsection, we present expressions for form fac-
tors incorporating contributions from two-body currents.
These ones are motivated by fulfilling current conservation
and reproducing the Born amplitude. They are followed
by two sets of results, obtained with a Galilean boost and
the “point form” one. In both cases, the wave function
from the model v1 is used.

5.2.1 Expressions of the calculated form factors

The two body-currents employed with the Galilean boost
are inspired from eqs. (34), (37) for the parts required to
fulfill current conservation and reproduce the Born ampli-
tude, respectively. However, since these currents are ap-
propriate to an instant-form formalism, we use an alter-
native expression of these currents that we could derive
assuming a Galilean-invariant extension of the interaction
model v1. These ones miss the relation to a well-defined
field-theory–motivated current and evidence features that
are sometimes unusual with this respect, although a rela-
tion to pair-type currents can be recovered in some limit.
As they are not of fundamental importance and perhaps
too specialized, we prefer to give their expressions together
with the contributions to form factors in appendix C.

For the “point form” approach, results are obtained
from eqs. (43), (44), (47), (48), (51). The full expressions
of the different form factors, including two-body currents,
are given below, while some intermediate steps are given
in appendix D. Using the relation implied by the δ4 func-
tions, the momenta relative to particle number 1 can al-
ways be written in terms of the momenta relative to parti-
cle number 2 (the spectator particle) and the four-velocity
vector λµ. In absence of ambiguity, the momentum �p in
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Table 5. Elastic and inelastic form factors F0(q
2), F1(q

2) and F2(q
2) in a Galilean approach as given in appendix C: Effect of

two-body currents motivated by current conservation (“int” line) and the Born amplitude (“int” + ∆B line). Calculations are
performed with the interaction model v1 and correspond to a coupling α = 3 for the Wick-Cutkosky model.

Q2/m2 0.01 0.1 1.0 10.0 100.0

α = 3, elastic, int
F0 0.735 0.701 0.454 0.365-01 0.198-03
F1 0.995 0.953 0.640 0.665-01 0.774-03

α = 3, elastic, int + ∆B
F0 0.959 0.921 0.628 0.635-01 0.643-03
F1 0.996 0.953 0.641 0.680-01 0.898-03

α = 3, inelastic, int
F0 −0.325-01 0.202-02 0.132-00 0.189-01 0.91-04
F1 0.469-02 0.430-01 0.186-00 0.318-01 0.33-03
F2 0.483 0.442 0.191-00 0.327-02 0.34-05
(two-body part of F2)

(24%) (25%) (28%) (48%) (116%)

α = 3, inelastic, int + ∆B
F0 0.086-01 0.509-01 0.209-00 0.361-01 0.37-03
F1 0.468-02 0.429-01 0.185-00 0.325-01 0.41-03
F2 0.481 0.442 0.191-00 0.335-02 0.42-05

the expressions given below will refer to this spectator
particle. When specialized to the frame �v = �vf = −�vi, the
form factors F0(q2), F̃1(q2) and F̃2(q2) successively read

F0(q2) =

√
Nf Ni

4m

(∫
d�p

(2π)3
φf (�ptf )

m

ep
φi(�pti)

+
∫

d�pf d�pi
(2π)6

φf (�ptf )φi(�pti)
m2

ef ei
(K∆B)0

)
,

F̃1(q2) =

√
Nf Ni

2 M̄

√
1− v2

×
(
F̄

1 + v2

1− v2

∫
d�p

(2π)3
φf (�ptf )φi(�pti)

+F̄
∫

d�pf d�pi
(2π)6

φf (�ptf )φi(�pti)
m2

ef ei
(Kint)1

+
∫

d�pf d�pi
(2π)6

φf (�ptf )φi(�pti)
m2

ef ei
(K∆B)1

)
,

F̃2(q2)�v = −
√
Nf Ni

2 M̄

√
1− v2

×
(
F̄

1 + v2

1− v2

∫
d�p

(2π)3
φf (�ptf )

�p

ep
φi(�pti)

+F̄
∫

d�pf d�pi
(2π)6

φf (�ptf )φi(�pti)
m2

ef ei
( �Kint)2

+
∫

d�pf d�pi
(2π)6

φf (�ptf )φi(�pti)
m2

ef ei
( �K∆B)2

)
, (52)

where M̄ , F̄ and N are defined in appendix C. The ex-
pressions of the K quantities, which account for two-body

currents, are given by

(Kint)1 = g2

[(
(λf ·pf )λ0

f − p0
f

Mi (λi ·pf )H(λi)
+

(λi ·pi)λ0
i − p0

i

Mf H(λf ) (λf ·pi)

)

+
1

H(λf )
X0 1

H(λi)

]
,

( �Kint)2 = g2

[(
(λf ·pf )�λf − �pf
Mi (λi ·pf )H(λi)

+
(λi ·pi)�λi − �pi

Mf H(λf ) (λf ·pi)

)

+
1

H(λf )
�X

1
H(λi)

]
,

(K∆B)0 =
g2

2

[
1

H(0)

(
m

λi ·pi λi ·pf +
m

λf ·pf λf ·pi

)

−
(

mλi ·(pi−pf )
λi ·pf H(0)H(λi)

+
mλf ·(pf−pi)

λf ·piH(0)H(λf )

)]
,

(K∆B)1 =
g2

4
µ2− (pi−pf )2 + λi ·(pi−pf )λf ·(pf−pi)

λf ·pf λi ·piH(0)H(λf )H(λi)

× 2 ē
M̄

(
Y 0 (pi − pf )·q − (pi − pf )0 Y ·q) ,

( �K∆B)2 =
g2

4
µ2− (pi − pf )2 + λi ·(pi − pf )λf ·(pf − pi)

λf ·pf λi ·piH(0)H(λf )H(λi)

× 2 ē
M̄

(
�Y (pi − pf )·q − (�pi − �pf )Y ·q

)
. (53)

As can be observed, the expression of the currents required
to ensure current conservation (Kint, �Kint) does not con-
tain any 1/q2 factor as the recipe given by eq. (36) would
imply.
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5.2.2 Results with two-body currents for the form factors in
a Galilean approach

The non-relativistic–type calculations of table 5 are es-
pecially useful to make the transition from the “exact”
results presented in sect. 3 to the “point form” ones pre-
sented in table 6, allowing one to distinguish effects spe-
cific of this last approach from those due to the restoration
of current conservation, to the Born-amplitude constraint
or to the dynamics.

At low momentum transfers, the suppression of the
elastic form factor F0 with respect to F1 (“int” case) is
reminiscent for some part of the one mentioned in sect. 3
for the “point form” case as a result of the normaliza-
tion definition. It is largely canceled by a pair term con-
tribution to the scalar form factor included in the Born-
constrained current. The same contribution also changes
the scalar inelastic form factor F0 from a negative to a
positive value. In both cases, the results (0.959 and 0.009
at Q2/m2 = 0.01) become closer to the “exact” ones
(1.123 and 0.054). At high momentum transfers, the elas-
tic and inelastic form factors, F0, in the “int” case de-
crease more quickly than the corresponding vector form
factors, F1. This is due to an extra (1/Q)-dependence in
the former. This discrepancy tends to disappear when the
Born-constrained current is considered. The results so ob-
tained are qualitatively in better agreement with the “ex-
act” ones. However the magnitude is smaller by a factor
5 or so. The comparison with the Coulombian-type re-
sults suggests that the discrepancy is to be ascribed to a
large part to the difference in the wave functions at the
origin that, as already mentioned, determines the overall
coefficient multiplying the asymptotic power law behavior
of form factors. This points to the relative simplicity of
the interaction model, v1, which does not do quite well as
to the description of the spectrum of the Wick-Cutkosky
model, while the Coulombian one does. We do not expect
this discrepancy to be removed when looking at the “point
form” results.

The last comment we want to make concerns the cur-
rent conservation that is better seen by looking at the form
factor, F2. Contrary to the Born-constrained current, the
two-body current motivated by current conservation has
a big influence in the “int” case. From 25% of F2 at low
momentum transfers, its contribution can raise up to 50%
for higher momentum transfers. Larger contributions are
expected when the average momentum of the constituent
particles increases (p̄2/m2 = 0.2 in the present case).

5.2.3 Results with two-body currents for the form factors in
the “point form” approach

The least that one can say about the contributions of two-
body currents in the “point form” approach is that they
strongly depend on the coupling, the mass of the system,
the elastic or inelastic, scalar or vector character of the
transition, and the presence or absence of a node in the
impulse approximation. We successively consider the ef-
fect of two-body currents motivated by current conserva-

Table 6. Elastic and inelastic form factors F0(q
2), F1(q

2) and
F2(q

2), calculated in the “point form” approach and including
two-body currents: results of eqs. (52), (53) are calculated with
the interaction model, v1, and are given for different couplings
of the Wick-Cutkosky model, α = 3 (α(v1) = 1.775, E =
0.432m) and α � 2π (α(v1) = 5.287, E = 1.90m). Different
approximations about the two-body currents are considered,
successively: impulse approximation (I.A.), with inclusion of
interaction currents (int) and with inclusion of both interaction
and Born-motivated currents (int + ∆B). Present results may
be compared to the “exact” (B.S.) ones given in tables 1-3 or,
better, to those given in table 5 (see text).

Q2/m2 0.01 0.1 1.0 10.0 100.0

α = 3, elastic, I.A.
F0 0.732 0.671 0.312 0.061-01 0.29-05
F1 0.992 0.924 0.493 0.205-01 0.46-04

α = 3, elastic, int
F0 0.732 0.671 0.312 0.061-01 0.29-05
F1 0.992 0.930 0.521 0.295-01 0.11-03

α = 3, elastic, int + ∆B
F0 1.142 1.065 0.573 0.268-01 0.20-03
F1 0.994 0.944 0.595 0.491-01 0.43-03

α = 3, inelastic, I.A.
F0 0.011 0.043 0.116 0.489-02 0.26-05
F1 0.019 0.059 0.167 0.136-01 0.33-04
F2 0.383 0.335 0.102 −0.373-03 −0.34-05

α = 3, inelastic, int
F0 0.011 0.043 0.116 0.489-02 0.26-05
F1 0.006 0.047 0.168 0.181-01 0.73-04
F2 0.535 0.474 0.171 0.186-02 0.79-06

α = 3, inelastic, int + ∆B
F0 0.059 0.097 0.187 0.167-01 0.12-03
F1 0.005 0.043 0.170 0.274-01 0.24-03
F2 0.469 0.432 0.173 0.282-02 0.25-05

α � 2π, elastic, I.A.
F0 0.096 0.012-01 0.50-06 0.86-10 0.12-13
F1 0.486 0.167-01 0.34-04 0.37-07 0.37-10

α � 2π, elastic, int
F0 0.096 0.001 0.50-06 0.86-10 0.12-13
F1 3.831 0.460 0.20-02 0.23-05 0.24-08

α � 2π, elastic, int + ∆B
F0 0.359 0.012 0.92-04 0.87-06 0.87-08
F1 5.452 0.699 0.49-02 0.32-04 0.30-06

tion and the Born-amplitude behavior, the corresponding
results being given in table 6 4. These results may be com-
pared to the “exact” (BS) ones given in tables 1-3 or to
those given in table 5. These last ones may represent bet-
ter benchmark results, taking into account that the v1
model, due to its simplicity, is not doing too well in repro-
ducing the “exact” (BS) spectrum, as already mentioned.

4 Involving a 4-dimensional integration, the two-body part
of the form factors involves some uncertainty and the accuracy
of the results may be smaller than what the number of digits
suggests. Differences may be significant however.
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Beginning with the elastic form factor corresponding
to α = 3, we found that the effect of two-body currents
motivated by current conservation is quite small at low Q2

but, being constrained to go to 0 at zero momentum trans-
fer with Q2, this result is not very significant. At higher
Q2, the effect is much larger (40% of the impulse approxi-
mation at Q2 = 10m2, more than 100% at Q2 = 100m2).
In comparison to the results given in table 5 in a simi-
lar case, we nevertheless notice that the drop-off of the
form factor is faster, scaling like Q−6 rather than Q−4

at high Q2. The inelastic form factor is more instructive
on the effects at low Q2 where F2(Q2) is enhanced by
about 30% while F1(Q2) gets decreased by 100% or so.
The large effects in this case are strongly related to cur-
rent conservation which implies that F1(Q2) scales like
Q2 at small momentum transfer. At higher momentum
transfer, 100% effects, constructive or destructive, are also
found. The last case now concerns the F2(Q2) form fac-
tor which is seen to scale like Q−8 while F1(Q2) scales
like Q−6. In comparison to the Galilean calculation pre-
sented in table 5, the relative size of the corrections is
qualitatively the same. As for the elastic case, the form
factor F1(Q2) drops too fast (Q−6 instead of Q−4). The
results for the strongly interacting case (M = 0.1) provide
a useful and complementary information. The corrections
make the form factor overshoot the value F1(Q2 = 0) = 1.
Essentially, depending on the quantity v2, the corrections
scale like M−2. They are therefore enhanced in the small
mass limit, in the same way that the charge radius is in
the present “point form” approach. The correction drops
off quickly at higher Q2 but this shows the limitations that
underlie the derivation of two-body currents to which too
much is asked in the present case. In our effort to construct
some systematics, we could have considered the inelastic
form factor for α � 2π. Compared to α = 3, we expect the
effect of two-body currents to be enhanced. However, the
striking features evidenced by the elastic form factors in
this limiting case, corresponding toM → 0, will be largely
absent due to the fact that the excited state, necessarily,
has a non-zero mass. In this respect, the inelastic case,
α � 2π, is much less instructive than the elastic one.

All the above results drop off too fast in comparison
to the expected power law behavior. This one therefore
relies on the two-body currents added to reproduce the
Born amplitude. At high Q2, the results so obtained are
however below the “exact” ones given in tables 1-3. Part
of the effect is certainly due to the choice of the inter-
action v1. The comparison with results given in table 5,
obtained with the same interaction model, should be more
adequate but it still shows some discrepancy. The results
for the strongly interacting case are again useful here. The
suppression of the form factor at high Q2 by many orders
of magnitude points to a dependence of the asymptotic
form factor on a factor M4, which simply stems from the
dependence of the form factor on the velocity v, which
involves the factor Q/M . The reduction factor (M/(2ē))4
largely explains the difference in the results given in ta-
bles 5 and 6 for α = 3. As reminded in the beginning of
sect. 4, one expects such factors to be canceled by inter-

action effects which, thus, do not appear to be accounted
for by the two-body currents we looked at. The currents
discussed here also contribute at low Q2. The most signif-
icant effect concerns the scalar form factor. The contribu-
tions, respectively 0.4 and 0.05 for the elastic and inelastic
form factors for α = 3 compare with those obtained in the
Galilean calculation, 0.22 and 0.04 (see table 5).

While looking at two-body currents motivated by cur-
rent conservation, an interesting question was whether
they could allow one to get the low-Q2 charge form fac-
tor right, in relation with the charge radius. Results for
the strong-interaction case leave this possibility open but
those for the smaller coupling, α = 3, rather point to a
different answer. In this case, which is under better control
(not much extra currents needed), most of the correction
at low Q2 is produced by the term introduced to ensure
the right power law behavior.

The fact that the present two-body currents do not al-
low one to get close to the “exact” results raises the ques-
tion of their derivation. As the standard front- and instant-
form calculations give reasonable results, one could apply
the unitary transformation that links different forms. As-
suming first that this is tractable, there is still a prin-
ciple difficulty. The instant- and front-form calculations
are usually done in a particular frame (Breit frame and
q+ = 0, respectively), and, strictly speaking, the form fac-
tors so obtained are not Lorentz invariant. Unless some
trick is employed, there is no way to relate these form
factors to the explicitly Lorentz-invariant form factors ob-
tained in “point form”. Moreover, such a unitary trans-
formation would not ensure that the two constraints we
considered (current conservation and reproduction of the
behavior of the Born amplitude) would be fulfilled. These
ones represent in our opinion more important benchmarks,
with a clear theoretical insight. Interestingly, two-body
currents constructed along the above lines seem to do a
good job in the case of instant-form calculations of form
factors in the Breit frame (some indication can be ob-
tained from examining results in table 5). This suggests
that the above requirements are on the good track but,
evidently, are not sufficient here.

6 Conclusion

In this work, we further investigated the calculation of
form factors in the “point form” approach for a two-body
system. With respect to a previous work [17], we also con-
sidered a scalar form factor, which gives another informa-
tion that can be compared to a more elaborate calculation.
This one is provided by the Wick-Cutkosky model where
form factors can be calculated exactly as far as one ne-
glects mass and vertex renormalization as usually done
when dealing with a two-body system. Possible correc-
tions, that could be accounted for by introducing form fac-
tors for the constituents, cancel out in this case but should
be incorporated when a comparison to experiment is done.
The consideration of the scalar form factor confirms con-
clusions reached previously. Taking into account that the
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non-relativistic calculation does rather well (which by it-
self deserves some explanation), the implementation of the
“point form” approach in the impulse approximation, as
used in recent works, does badly both at low and large
Q2. At low Q2, results are not protected by the conserva-
tion of some charge as for the vector case. At large Q2 it
decreases more quickly, 1/Q8 instead of 1/Q4 (up to log
factors). We also checked that, qualitatively, the results for
both the scalar and vector form factors were unchanged by
using another interaction in the mass operator. The limit
M → 0 reveals that the charge and scalar radii scale like
1/M in the “point form” approach, while the scalar form
factor tends to 0 when Q2 → 0. None of these features is
supported by the “exact” calculation.

Within the implementation of the “point form” ap-
proach used here, the only way to explain the above dis-
crepancies relies on large contributions from two-body cur-
rents. These ones have been derived to ensure both current
conservation and to reproduce the power law behavior of
the Born amplitude. This has been done consistently with
the choice for the single-particle current (the simplest one)
and for an interaction model which allows for a derivation
in closed form (the interaction only appears at first order).
We will not comment on their performance with respect
to the above-requested properties since they have been de-
rived in such a way that they should be fulfilled. It is more
interesting to investigate the qualitative and quantitative
features that these two-body currents evidence.

What characterizes the two-body currents considered
here is that they have not much to do with standard ones.
Even though they involve the exchange of a neutral bo-
son, and despite the fact that the interaction model has
been chosen to make them as simple as possible, they are
considerably more complicated than similar currents in a
non-relativistic approach. Obtained somewhat by “brute
force”, these currents cannot be related to time-ordered
diagrams. The reason for this is simple. The initial and
final states being described on different hyper-planes, cor-
responding therefore to different invariant times, there is
no way to define time-ordered diagrams unambiguously.
The situation is different for the two-body currents en-
suring the right F0/F1 ratio. Treated very approximately,
these currents should also be a part of other relativistic
quantum mechanics approaches.

To ensure current conservation, a recipe is sometimes
used in the literature [8] that involves a pole at Q2 = 0.
This can be acceptable in the case where the spectrum in
the t-channel exhibits a zero-mass particle, as would be the
case for the axial current in hadronic physics, where this
particle could be the pion in the chiral symmetry limit.
The two-body currents derived here do not evidence such
a pole, as expected. Actually, using the above recipe, one
could construct a single- and a two-body current sepa-
rately conserved. When the equation of motion is used
however, it turns out that the terms with a pole at Q2 = 0
cancel each other. This is an important constraint on the
derivation of the two-body currents.

Quantitatively, for a rather moderately bound system
(p̄2/m2 = 0.2), we found that two-body currents moti-

vated by current conservation produce contributions to
elastic charge form factors ranging from 0% at low Q2 up
to 100% at Q2 = 100m2. The situation is slightly different
for an inelastic transition where there is no constraint like
charge conservation which imposes corrections to vanish
at Q2 = 0. There are other constraints and corrections
that can reach 100% with a destructive character so that
to recover relations such as F1(Q2) → 0 when Q2 → 0
or F2(Q2)/F1(Q2) → Q−2 at high Q2. Otherwise correc-
tions vary from 25% at low Q2 for F2(Q2) up to 100%
at Q2 = 100m2 for F1(Q2). Corrections due to two-body
currents motivated by the Born amplitude are important
too and are the dominant ones beyond Q2 = 10m2. If
one puts apart aspects specific to the “point form” ap-
proach (like the faster drop-off), large similarities with a
Galilean-type calculation are observed. Evidently, larger
effects may be obtained in a stronger bound system with
a larger value of p̄2/m2, as evidenced by some results for
the case M = 0.1m.

In comparison with an “exact” calculation, present
“point form” results with incorporation of contributions
due to two-body currents still show striking discrepan-
cies. The increase of the charge radius in the limit M → 0
largely persists. While the form factor at high Q2 has the
right power law, the relative strength is found to be too
small by a factor of the order (M/(2ē))4. Both effects can
be ascribed to the fact that the dependence on Q2 ap-
pears only through the factor v2 = (Q2/(4M2+Q2)) and
involve interaction effects that make M 
= (2ē). This sug-
gests that significant two-body currents are still missing.

Interestingly, many recent works looking at the frame
dependence of form factors [26–28] show features simi-
lar to the above ones when only the valence contribution,
excluding therefore two-body currents, is retained. These
works were mainly performed in the light-front approach
and, for some of them, have a field-theory foundation. The
same features have also been observed in an instant-form
calculation in the limit of an overall large momentum car-
ried by the system under consideration [24]. In some cases,
the form factors can be shown to depend on Q through
the ratio Q/M , as in point form results presented here. It
is therefore legitimate to establish some relationship be-
tween the above works and the present one. For those of
these studies that have a field-theory foundation, a com-
plete analysis is possible showing what are the two-body
currents that allow one to recover the “exact” result. It
is thus found that these currents have a non-trivial struc-
ture, with an integrand behaving like 0/0 in the large mo-
mentum limit (instant-form case). Clearly, it seems that
similar two-body currents are needed in the present case
too. Having a non-perturbative character, they could not
be obtained however from minimal conditions such as cur-
rent conservation or reproducing the Born-amplitude be-
havior. Studying these currents and their implementation
in the “point form” approach is an important task for
the future. It would be in particular interesting to eluci-
date why they are needed in a formalism which ensures
the frame independence of form factors, while they are
required in other forms to restore this very property.
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Present studies on the implementation of the “point
form” approach have been devoted to a simple system.
The ultimate aim however is to settle a formalism whose
reliability is good enough to be applied to a physical sys-
tem, the pion in first place. Apart from the necessity of in-
troducing further two-body currents, as mentioned above,
two aspects have to be considered: the spin-(1/2) nature of
the constituents and the Goldstone character of the pion.
The first one requires some care as the correct asymptotic
behavior of the pion form factor is not expected to come
from the one-body current [9] but from two-body currents
that account for the contribution of extra components ap-
pearing in other formalisms [29]. As for the second one,
it manifests itself by the low mass of the pion. As seen
in this work, this is the case where the implementation of
the “point form” approach is the worse. Being indepen-
dent of the spin of the constituents, the effect requires a
solution in the spin-less case. The present work, though
concerned with an academic system, is therefore of the
utmost importance.
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Appendix A. Form factors in the
Wick-Cutkosky model

This appendix contains expressions of form factors in the
Wick-Cutkosky model which are used in the present work,
successively for a scalar and a vector probe.

Appendix A.1. Matrix element of a scalar current

– Matrix element of the current n = 1 → n = 1:

F0(q2) =
i

2

∫
d4p

4π
dzf dzi

× g1(zf ) g1(zi)(
m2 − (P 2

f − 2Pf ·p) 1+zf

2 − p2 − iε
)3

× (p2 −m2)(
m2 − (P 2

i − 2Pi ·p) 1+zi

2 − p2 − iε
)3

=
3π
8

∫
dzf dzi dx

g1(zf ) g1(zi)x2 (1− x)2

D4
I0, (A.1)

with

I0 =
1
2

(
m2 − 1

4
(Zf + Zi)

(
M2
f Zf +M2

i Zi
)

−1
4
Q2 Zf Zi

)
+

1
3
D,

D = m2 − 1
4
(2− Zf − Zi)

(
M2
f Zf +M2

i Zi
)

+
1
4
Q2 Zf Zi, (A.2)

where Zi = (1 + zi)x and Zf = (1 + zf ) (1− x).

– Matrix element of the current n = 1, l = 0 → n = 2,
l = 0:

F0(q2) =
i

2

∫
d4p

4π
dzf dzi

× g2(zf ) g1(zi)(
m2 − (P 2

f − 2Pf ·p) 1+zf

2 − p2 − iε
)4

×
(
( 1
2Pf − p)2 +m2 − 1

4P
2
f

)
(p2 −m2)(

m2 − (P 2
i − 2Pi ·p) 1+zi

2 − p2 − iε
)3

=
π

4

∫
dzf dzi dx

g2(zf ) g1(zi) (1− x)3 x2

D5
I0, (A.3)

with

I0 =
1
2
(2AB +D (C −A−B) +D2),

H =
1
4

(
M2
f (Zf + Zi/2) +M2

i Zi/2
)
+

1
8
Q2 Zi,

A =
1
4
(Zf+Zi)

(
M2
f Zf +M2

i Zi
)
+

1
4
Q2 Zf Zi −m2,

B = A− 2H + 2m2, C = −A+H −m2. (A.4)

The quantity D, referred to here and below, is defined in
eq. (A.2).

Appendix A.2. Matrix element of a vector current

– Matrix element of the current n = 1 → n = 1:

F1(q2) (P
µ
f + Pµi ) + F2(q2) qµ =

i

∫
d4p

4π
dzf dzi

g1(zf ) g1(zi)
(
Pµf + Pµi − 2 pµ

)
(
m2 − (P 2

f −2Pf ·p) 1+zf

2 − p2−iε
)3

× (p2 −m2)(
m2 − (P 2

i − 2Pi ·p) 1+zi

2 − p2 − iε
)3

=
3π
8

∫
dzf dzi dx

g1(zf ) g1(zi) (1− x)2 x2

D4

×
(
I1 (P

µ
f + Pµi ) + I2 q

µ
)
, (A.5)
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with qµ = (Pf − Pi)µ and

I1 = (2−Zf−Zi)
(
m2− 1

4
M2
f Zf−

1
4
M2
i Zi

)
− 1

3
D,

I2 = − (Zf − Zi)
(
m2 − 1

4
M2
fZf −

1
4
M2
i Zi

)
. (A.6)

– Matrix element of the current n = 1, l = 0 → n = 2,
l = 0:

F1(q2) (P
µ
f + Pµi ) + F2(q2) qµ =

i

∫
d4p

4π
dzf dzi

g2(zf ) g1(zi)
(
Pµf + Pµi − 2 pµ

)
(
m2 − (P 2

f −2Pf ·p) 1+zf

2 − p2−iε
)4

×
(
( 1
2Pf − p)2 +m2 − 1

4P
2
f

)
(p2 −m2)(

m2 − (P 2
i − 2Pi ·p) 1+zi

2 − p2 − iε
)3

=
π

4

∫
dzf dzi dx

g2(zf ) g1(zi) (1− x)3 x2

D5

×
(
I1 (P

µ
f + Pµi ) + I2 q

µ
)
, (A.7)

with

I1 = PC +
1
2
PA − 1

2
(Zf + Zi) (PC + PA + PB),

I2 =
1
2
PA − 1

2
(Zf − Zi) (PC + PA + PB),

PA =
1
2
D (D −A), PB =

1
2
D (D −B),

PC = 2AB +D (C −A−B) +D2. (A.8)

where A, B and C are defined in eq. (A.4).

Appendix B. Analytic expressions for form
factors in the “point form” approach

Expressions of form factors calculated in the “point form”
approach for a simple interaction model v0, first presented
in ref. [17], are given together with details concerning their
derivation as well as the non-relativistic expressions.

For the wave functions we use solutions obtained with
a Coulomb potential,

[
4
(
p2+m2

)−M2
]
φ(�p) = −4m

∫
d�p ′

(2π)3
Vint(�p, �p ′)φ(�p ′),

with Vint(�p, �p ′) = − g2

(�p− �p ′)2
. (B.1)

The wave functions of the ground and first-excited states,
φi(�p ) and φf (�p ), respectively, are then given by

φi(�p ) =
√
4π

4κ5/2

(κ2 + �p 2)2
,

φf (�p ) =
√
4π

8κ∗5/2

(κ∗2 + �p 2)3
(�p 2 − κ∗2), (B.2)

where κ2 = m2 − 1
4M

2, κ∗2 = m2 − 1
4M

∗2, the total mass
M (M∗) being the one obtained from the Bethe-Salpeter
equation (κ2 � 4κ∗2). The binding energy E, referred to
in tables 1-6, is related to the total mass of a state by
M2 = (2m − E)2. It has been shown that an equation
like eq. (B.1) reproduces rather well the (normal) spec-
trum of the Wick-Cutkosky model, provided an effective
coupling is used [31,32]. In particular, both models ex-
hibit the same degeneracy pattern. The wave functions
of eqs. (B.2) should therefore be a good zeroth-order ap-
proximation for our study, including for the extreme case
M2 = 0.

With these wave functions, some of the form factors
can be calculated analytically. Thus, in the “point form”
approach, the elastic form factor reads

F1(q2 = −Q2) =
1 + 2 Q2

4M2(
1 + Q2

4M2

)4
(
1 + Q2

16κ2
(
1+ Q2

4M2

)
)2 ,

F2(q2 = −Q2) = 0. (B.3)

Interestingly, the quantity Q2

16κ2 at the denominator of
F1(q2) is divided by the factor 1 + Q2

4M2 . This one was in-
troduced in many calculations to account for the Lorentz-
contraction effect [10,11] but it turned out to be valid
only at small Q2. The inelastic form factors for a transi-
tion from the ground state to the first-excited radial state,
F̃1(q2) and F̃2(q2) are given by

F̃1(q2) = (1 + v2) (1− v2)3

× 64
√
2κ4 v2 (16m2 − 4κ2(1− v2))

(9κ2 + v2 (16m2 − 10κ2) + v4κ2)3
,

F̃2(q2) = (1 + v2) (1− v2)4

× 64
√
2 (3 + v2)κ6

(9κ2 + v2 (16m2 − 10κ2) + v4κ2)3
, (B.4)

where v2 is defined after eq. (16). There is no known an-
alytic expression for the form factor, F0(q2 = −Q2).

In the non-relativistic case, the elastic and inelastic
form factors are respectively given by

F0(q2) = F1(q2) =
κ4

(κ2 +Q2/16)2
, F2(q2) = 0,

F0(q2) = F1(q2) =
64

√
2κ4 Q2

(9κ2 +Q2)3
, F2(q2) =

192
√
2κ6

(9κ2 +Q2)3
.

(B.5)
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The equality κ = 2κ∗ = mαeff
2 has been assumed. Taking

into account that M2
f − M2

i = 3κ2, one can verify that
the current conservation condition, eq. (2), is fulfilled.

To get analytic expressions for the form factors in the
“point form” using Coulombian-type wave functions, the
following relations have been employed:

∫
d�p

(
κ2 + p2

x + p2
y +

(
pz − v ep√
1− v2

)2
)−1

×
(
κ∗2 + p2

x + p2
y +

(
pz + v ep√
1− v2

)2
)−1

=

π2 (1− v2)3/2

v

[
M +M∗

MM∗ arctan
(
v (M +M∗)
2 (κ+ κ∗)

)

−M −M∗

MM∗ arctan
(
v (M −M∗)
2 (κ+ κ∗)

)]
,

∫
d�p

(
κ2 + p2

x + p2
y +

(
pz − v ep√
1− v2

)2
)−1

×
(
κ∗2 + p2

x + p2
y +

(
pz + v ep√
1− v2

)2
)−1

pz
ep

=

π2 (1− v2)3/2

v2

[
M −M∗

MM∗ arctan
(
v (M +M∗)
2 (κ+ κ∗)

)

−M +M∗

MM∗ arctan
(
v (M −M∗)
2 (κ+ κ∗)

)]
. (B.6)

Complete expressions for the form factors are obtained by
adding appropriately derivatives of the above ones with
respect to the quantities κ2 or κ∗2, taking into account
that M and M∗ depend on them.

For the ground state, the elastic form factor in the
“point form” can be directly obtained from the non-
relativistic one by making a change of variable, starting
from the above expression:

∫
d�p

(
κ2 + p2

x + p2
y +

(
pz − v ep√
1− v2

)2
)−1

×
(
κ2 + p2

x + p2
y +

(
pz + v ep√
1− v2

)2
)−1

=

(1− v2)3/2
∫

dpx dpy dp̃z
[
(κ2 + p2

x + p2
y + v2 m̃2)2

+2p̃2
z(κ

2 + p2
x + p2

y − v2 m̃2) + p̃4
z

]−1
. (B.7)

The integrand is identical to the non-relativistic one,
where m2 has been replaced by m̃2 = m2 − κ2 (= M2/4).

Appendix C. Two-body currents and form
factors in a Galilean approach

Expressions for the two-body currents in a relativized,
Galilean-invariant approach (interaction model v1 in the
text), together with their contributions to form factors are
given in this appendix. Their presentation roughly follows
the same structure as those for the “point form” case,
eqs. (52), (53).

F0(q2) =

√
Nf Ni

4m

×
(∫

d�p ′ d�p
(2π)3

φf (�p ′)
2m

ep + ep′
φi(�p ) δ

(
1
2
�q + �p ′ − �p

)

+
∫

d�p ′ d�p
(2π)6

φf (�p ′)φi(�p )
m2

epep′
(K∆B)0

)
,

F1(q2) =

√
Nf Ni

2 M̄

×
(
F̄

∫
d�p ′ d�p
(2π)3

φf (�p ′)φi(�p ) δ
(
1
2
�q + �p ′ − �p

)

+F̄
∫

d�p ′ d�p
(2π)6

φf (�p ′)φi(�p )
m2

epep′
(Kint)1

+
∫

d�p ′ d�p
(2π)6

φf (�p ′)φi(�p )
m2

epep′
(K∆B)1

)
,

F2(q2) �q = −√
Nf Ni

×
(
F̄

∫
d�p ′ d�p
(2π)3

φf (�p ′)
�p+ �p ′

ep + ep′
φi(�p ) δ

(
1
2
�q + �p ′ − �p

)

+F̄
∫

d�p ′ d�p
(2π)6

φf (�p ′)φi(�p )
m2

epep′
( �Kint)2

+
∫

d�p ′ d�p
(2π)6

φf (�p ′)φi(�p )
m2

epep′
( �K∆B)2

)
,

with F̄ = 1−
(
M̄ − 2 ē
M̄ + 2 ē

)2

, (C.1)

and M̄ = (Mi+Mf )/2, ē = (ēi+ēf )/2. The normalization
factors Ni,f and the quantities ēi,f are defined by

1
Ni,f

=
∫

d�p
(2π)3

φ2
i,f (�p )

4 ep
(M + 2 ep)2

=
4 ēi,f

(M + 2 ēi,f )2

∫
d�p

(2π)3
φ2
i,f (�p ). (C.2)
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The expressions of the K quantities, which account for
two-body currents, are given by

(Kint)1 = 0,

( �Kint)2 = − g2

µ2 + (1
2�q + �p ′ − �p )2

1
ep′+q/2 ep−q/2

×
(
ep

�p ′ + �q/4
ep′+q/2 + ep′

+ ep′
�p− �q/4

ep−q/2 + ep

)
,

(K∆B)0 =
g2

µ2 + (1
2�q + �p ′ − �p )2

×
(

2m
2 ep′+q/2 (ep′+q/2 + ep)

+
2m

2 ep−q/2 (ep−q/2 + ep′)

)
,

(K∆B)1 =
g2

µ2 + (1
2�q + �p ′ − �p )2

×
(

ep′ (ep′+q/2 − ep′)
2 ep′+q/2 (ep′+q/2 + ep) (ep′+q/2 + ep′)

+
ep (ep−q/2 − ep)

2 ep−q/2 (ep−q/2 + ep′) (ep−q/2 + ep)

)
,

( �K∆B)2 =
g2

µ2 + (1
2�q + �p ′ − �p )2

×
(

ep′ q
0 (�p ′ + �q/4)

2 ep′+q/2 (ep′+q/2 + ep) (ep′+q/2 + ep′)2

+
ep q

0 (−�p+ �q/4)
2 ep−q/2 (ep−q/2 + ep′) (ep−q/2 + ep)2

)
, (C.3)

where q0 is defined as Mf − Mi, consistently with a
Galilean-invariant calculation. While one could recover
eqs. (37), (38) in some limit, the above expressions evi-
dence significant differences. Equations (37), (38) contain
denominators with four energy terms instead of two here.
On the other hand, they do not contain a squared term at
the denominator like in eq. (C.3). These differences illus-
trate the absence of a guide to derive two-body currents as
soon as an effective interaction is used. Notice also that the
term ensuring current conservation, �Kint, does not contain
any 1/q2 term.

Appendix D. Two-body currents in the
“point form” approach

The difference between the current in the full Born
approximation and the one accounted for by solving

eqs. (39), (40) is given by

Jµ∆B(q, p1i, p2i, p1f , p2f ) =

−
√

m

λf ·p1f

m

λf ·p2f

g2 δ(�q + �Pi − �Pf )
µ2 − (p2i − p2f )2

√
m

λi ·p1i

m

λi ·p2i

×2λµi (λi ·p2i)− pµ2f + 2λµf (λf ·p2f )− pµ2f
4λi ·p2i (λi ·p2i − λi ·p2f )

+
√

m

λf ·p1f

m

λf ·p2f

g2 δ(�q + �Pi − �Pf )
µ2 − (p2i−p2f )2 + (λi ·(p2i − p2f ))2

×
√

m

λi ·p1i

m

λi ·p2i

2λµi (λ
i ·p2f )−pµ2f+2λµf (λf ·p2f )−pµ2f
4λi ·p2f (λi ·p2i − λi ·p2f )

+ (i ↔ f). (D.1)

This can be rewritten in a way which emphasizes the ab-
sence of the pole term 1/(λi ·p2i − λi ·p2f ):

Jµ∆B(q, p1i, p2i, p1f , p2f ) =√
m

λf ·p1f

m

λf ·p2f

g2

2
δ(�q + �Pi − �Pf )

√
m

λi ·p1i

m

λi ·p2i

×
[ (

λµf (λf ·p2f )− pµ2f
λi ·p2i

+ λµi

)

×
(
λi ·(p2f − p2i)
H(0)H(λi)

+
(λi + λf )·(p2i − p2f )

H(λf )H(λi)

)

+
(
λµi (λi ·p2i)− pµ2i

λf ·p2f
+ λµf

)

×
(
λf ·(p2i − p2f )
H(0)H(λf )

+
(λi + λf )·(p2f − p2i)

H(λf )H(λi)

) ]
. (D.2)

For the scalar probe, one gets similarly

S∆B(q, p1i, p2i, p1f , p2f ) =

−
√

m

λf ·p1f

m

λf ·p2f

g2 δ(�q + �Pi − �Pf )
µ2 − (p2i − p2f )2

× 2m
4λi ·p2i (λi ·p2i − λi ·p2f )

√
m

λi ·p1i

m

λi ·p2i

+
√

m

λf ·p1f

m

λf ·p2f

g2 δ(�q + �Pi − �Pf )
µ2 − (p2i−p2f )2 + (λi ·(p2i − p2f ))2

× 2m
4λi ·p2f (λi ·p2i − λi ·p2f )

√
m

λi ·p1i

m

λi ·p2i
+ (i ↔ f)

=
√

m

λf ·p1f

m

λf ·p2f

g2

2
δ(�q + �Pi − �Pf )

√
m

λi ·p1i

m

λi ·p2i

×
[

1
H(0)

(
m

λi ·p2i λi ·p2f
+

m

λf ·p2f λf ·p2i

)

−
(

mλi ·(p2i − p2f )
λi ·p2f H(0)H(λi)

+
mλf ·(p2f − p2i)
λf ·p2iH(0)H(λf )

)]
. (D.3)
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Contribution of a two-body current to the matrix element
of the scalar or vector current:

√
2Ef 2Ei 〈f |

(
S∆B
Jµ∆B

)
|i〉 =

√
Nf Ni

1
(2π)6

∫
d4p1f d4p1i d4p2f d4p2i dηf dηi

× δ(p2
1f −m2) δ(p2

1i −m2) δ(p2
2f −m2) δ(p2

2i −m2)

× θ(λf ·p1f ) θ(λf ·p2f ) θ(λi ·p1i) θ(λi ·p2i)

× δ4(p1f + p2f − λfηf ) δ4(p1i + p2i − λiηi)

×φf

((
p1f − p2f

2

)2
)
φi

((
p1i − p2i

2

)2
)

×
√
(p1f + p2f )2 (p1i + p2i)2 4m2

×
(
S̃∆B
J̃µ∆B

)
(q, p1f , p2f , p1i, p2i), (D.4)

where S̃∆B (J̃µ∆B) represents the quantity S∆B (Jµ∆B) of
eqs. (D.2), (D.3) excluding the δ-function and the nor-
malization factors m/e accounted for separately.

The corresponding one-body contribution (which dif-
fers from eq. (14) by the presence of the overall factor√
Nf Ni in place of

√
2Mf 2Mi) reads

√
2Ef 2Ei 〈f |S|i〉 =

√
Nf Ni

(2π)3

∫
d4pd4pf d4pi dηf dηi

× δ(p2 −m2) δ(p2
f −m2) δ(p2

i −m2)

× θ(λf ·pf ) θ(λf ·p) θ(λi ·p) θ(λi ·pi)
× δ4(pf + p− λfηf ) δ4(pi + p− λiηi)

×φf

((
pf−p
2

)2
)
φi

((
pi−p
2

)2
)

×
√
(pf+p)2 (pi+p)2 2m. (D.5)
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